
Genetic Algorithm for Evolving an Objective Function of a Program Synthesizer
Student: Nikolaos Efthymiou || Supervisor: Sebastijan Dumančić, Algorithmics group – TU Delft

1. Introduction

- Program Synthesis (PS) problem: Given a programming language that
defines the program space and a user intent/specification, find a
program that satisfies this specification.

Elements of PS

Objective function: key aspect of a program synthesizer to guide the
search

A Genetic Algorithm can partially automate the design of an objective
function.

General criteria

Well-studied PS domains (String transformation and Robot Planning) [1]

- Manually-designed objective functions exist for the Robot and the
String domains [2, 3].

- Genetic Algorithm (GA) is a well-known population-based metaheuristic
algorithm

- GAs have been used for the evolution of functions

- Elements: chromosome representation, fitness function, selection,
mutation and crossover

- A GA could take as input several user-defined domain-specific local
distance functions and combine them to construct objective functions

- Research Question: How effective is a program synthesizer using an
objective function that is evolved by means of a Genetic Algorithm?

2. Methodology

- Objective functions involving user-defined domain-specific local
distance functions are evolved with the GeneticObjective GA.

Local distance functions used in our experiments

Elements of GeneticObjective

*(S: percentage of solved tasks, U: average percentage of unsolved examples over the unsolved tasks, R:
average normalized runtime of Brute)

- Evaluation of GeneticObjective: experiments in the Robot and String
domains, using the Brute synthesizer [1].

- Analyse the convergence of GeneticObjective

- Compare fitness value of best function found with the value
obtained by the manually-designed objective function

3. Results

Robot Planning:
- Train set size=150, test set size=350
- Suboptimal solutions for pm=0.01 (premature convergence) and

pm=0.16 (prevents convergence)
- Poor results for e=2

- Low value => lack of exploitation of the good solutions
- The diversity of the population affects the performance of the GA:

Poor performance for a low value of pc=0.5
- There is only a single task => [w1, w2, w3] = [0, 0.9, 0.1]

String transformation:
- Train set size=150,

test set size=225
- [w1, w2, w3] = [0.6, 0.3, 0.1]
- Poor results with high pm value

(0.2) (it resembles a random search)
- Most configurations led to similar results

- H, p and G do not significantly affect the performance of
GeneticObjective

4. Conclusions

- The experiments we conducted showed that our approach is effective in
both domains, by reaching or even surpassing the effectiveness of the
manually-designed function.

- Low scores in the String domain could be attributed to the inherent difficulty
of the domain. Thus, a more effective synthesizer would be required to
obtain better results.

5. Limitations and Future Work

- Limited scope regarding the number of configurations tested and the
number of trials per configuration.

- An interesting direction: integrate an existing manually-designed objective
function in the fitness function of GeneticObjective.
- Consider the distance to the correct output, together with the

percentage of examples/tasks solved and the running time
- Eliminate equivalent expressions
- Consider more complex objective functions, e.g. add conditional

expressions.

Domain Manual fitness Best fitness GA Time taken

Robot 0.95 0.95 36m

String 0.24 0.29 98m

User specification

I/O examples
(Programming By

Example)

Program Space

Domain-Specific
Language (DSL)

Search technique

Brute synthesizer

[1]

M
an

u
al

ly
d

es
ig

n
ed

 Error prone

Time consuming

Domain knowledge is required

Reaching a given number of generationsTermination condition

Fitness function*

Algebraic expressions in the form of binary expression treesChromosome encoding

Random expression trees of a given maximum heightInitial population

Replacement of a random nodeMutation

Exchange random subtrees of the parentsCrossover

Deterministic k-tournament selectionParent selection

Mostly elite size = 6Elitism

Objective
function

Performance
Program

Complexity

≪
‘length difference’, ‘difference in
number of upper-case characters’, …

Best fitness curve for the Robot domain

[3]

References
1. Andrew Cropper and Sebastijan Dumancic. Learning large logic programs by going beyond entailment. ArXiv,

abs/2004.09855, 2020.
2. Stef Rasing. Improving inductive program synthesis by using very large neighborhood search and variable-

depth neighborhood search. https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8-
c5a965d62e4e?collection=education, 2022.

3. Bas Jenneboer. Program synthesis with a*. https://repository.tudelft.nl/islandora/object/uuid:873c3b33-
2501-4438-a610-6dcb8ab8ad72?collection=education, 2022.

https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8-c5a965d62e4e?collection=education
https://repository.tudelft.nl/islandora/object/uuid:873c3b33-2501-4438-a610-6dcb8ab8ad72?collection=education

