

- Manually-designed objective functions exist for the Robot and the String domains [2, 3].
- Genetic Algorithm (GA) is a well-known population-based metaheuristic algorithm
 - GAs have been used for the evolution of functions
 - Elements: chromosome representation, fitness function, selection, mutation and crossover
- A GA could take as input several user-defined *domain-specific local* distance functions and combine them to construct objective functions

'length difference', 'difference in								
number of upper-case characters',								

<u>×</u>	$OPT(i,j) = \langle$	$j \min $	$\begin{cases} \text{OPT}(i-1,j-1) \\ 1 + \text{OPT}(i-1,j-1) \\ 1 + \text{OPT}(i-1,j) \end{cases}$	$if x_i \\ if x_i \\ othe$
		∞		

Research Question: How effective is a program synthesizer using an objective function that is evolved by means of a Genetic Algorithm?

Genetic Algorithm for Evolving an Objective Function of a Program Synthesizer Student: Nikolaos Efthymiou || Supervisor: Sebastijan Dumančić, Algorithmics group – TU Delft

$$\mathcal{F}_{\text{robot}} = \begin{cases} L^{1}(p_{r}, p_{b}^{*}), \\ L^{1}(p_{r}, p_{r}^{*}), \\ L^{1}(p_{b}^{*}, p_{r}^{*}), \\ L^{1}(p_{r}, p_{b}), \\ L^{1}(p_{b}, p_{b}^{*}) \end{cases} \quad \mathcal{F}_{\text{string}} = \begin{cases} \min(|s|) \\ ab \\ ab \\ a \end{cases}$$

2. Methodology				3. R			
- Objective functions involving user-defined domain-specific <i>local distance functions</i> are evolved with the <i>GeneticObjective</i> GA.			Domain	Manual fitness	Best fitness GA	Time taken	
			Robot	0.95	0.95	36m	
			String	0.24	0.29	98m	
$\mathcal{L}ocal distance functions used in our experiments$ $\mathcal{F}_{robot} = \begin{cases} L^1(p_r, p_b^*), \\ L^1(p_r, p_r^*), \\ L^1(p_b^*, p_r^*), \\ L^1(p_r, p_b), \\ L^1(p_b, p_b^*) \end{cases} \mathcal{F}_{string} = \begin{cases} abs(s - s^*), \\ min(s , s^*) - s \cap s^* , \\ abs(i-i^*), \\ abs(i-i^*), \\ abs(cU(s) - cU(s^*)), \\ abs(cL(s) - cL(s^*)) \end{cases}$ $Elements of GeneticObjective$			 Robot Planning: Train set size=150, test set size=350 Suboptimal solutions for p_m=0.01 (premature converge p_m=0.16 (prevents convergence) Poor results for e=2 Low value => lack of exploitation of the good solutio The diversity of the population affects the performance Poor performance for a low value of p_c=0.5 There is only a single task => [w₁, w₂, w₃] = [0, 0.9, 0.1] 				
Termination condition	Reaching a given number of generations						
Fitness function*	$\mathcal{V}(T, \mathcal{E}_D) = w_1 S + w_2 (1 - U) + w_3 (1 - R)$			0.9 -	····		
Chromosome encoding	Algebraic expressions in the form of binary expression trees			0.8 -	\neq		
Initial population	Random expression trees of a given maximum height			0.7 - ي	•••/		
Mutation	Replacement of a random node			- 6.0 Eth	*		
Crossover	Exchange random subtrees of the parents			0.5 -			
Parent selection	Deterministic k-tournament selection			0.4 -			
 Elitism Mostly elite size = 6 *(S: percentage of solved tasks, U: average percentage of unsolved examples over the unsolved tasks, R: average normalized runtime of Brute) Evaluation of <i>GeneticObjective</i>: experiments in the Robot and String domains, using the Brute synthesizer [1]. Analyse the convergence of <i>GeneticObjective</i> 		St	String transformation: - Train set size=150, test set size=225 - $[w_1, w_2, w_3] = [0.6, 0.3, 0.1]$ - Poor results with high p _m value (0.2) (it resembles a random search)				
 Compare fitness value Obtained by the mar 	-	- Most configurations led to similar results					

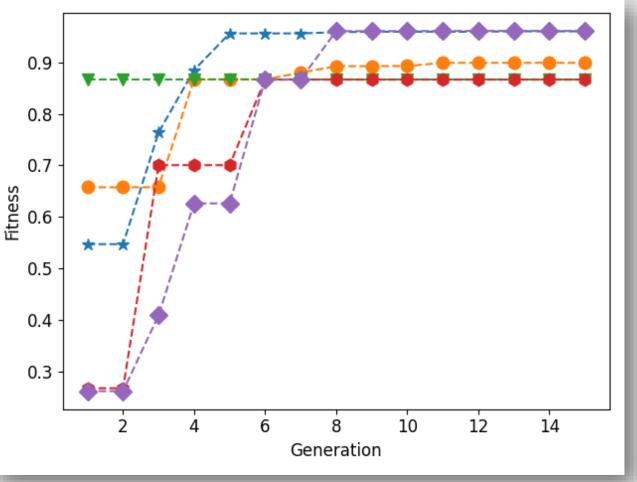
4. Conclusions

- The experiments we conducted showed that our approach is effective in both domains, by reaching or even surpassing the effectiveness of the manually-designed function.
- Low scores in the String domain could be attributed to the inherent difficulty of the domain. Thus, a more effective synthesizer would be required to obtain better results.

References

- Andrew Cropper and Sebastijan Dumancic. Learning large logic programs by going beyond entailment. ArXiv, abs/2004.09855, 2020.
- 2. Stef Rasing. Improving inductive program synthesis by using very large neighborhood search and variabledepth neighborhood search. https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8c5a965d62e4e?collection=education, 2022.
- Bas Jenneboer. Program synthesis with a*. <u>https://repository.tudelft.nl/islandora/object/uuid:873c3b33-</u> 2501-4438-a610-6dcb8ab8ad72?collection=education, 2022.

if i=0 $x_i \equiv y_j$ erwise if j = 0[3]



5. Limitations and Future Work

- Limited scope regarding the number of configurations tested and the number of trials per configuration. - An interesting direction: integrate an existing manually-designed objective function in the fitness function of *GeneticObjective*. - Consider the distance to the correct output, together with the percentage of examples/tasks solved and the running time
- Eliminate equivalent expressions Consider more complex objective functions, e.g. add conditional expressions.

- and
- ne GA:

