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1. Introduction

- Program Synthesis (PS) problem: Given a programming language that 
defines the program space and a user intent/specification, find a 
program that satisfies this specification.

Elements of PS

Objective function: key aspect of a program synthesizer to guide the 
search

A Genetic Algorithm can partially automate the design of an objective 
function.

General criteria

Well-studied PS domains (String transformation and Robot Planning) [1]

- Manually-designed objective functions exist for the Robot and the 
String domains [2, 3].

- Genetic Algorithm (GA) is a well-known population-based metaheuristic 
algorithm

- GAs have been used for the evolution of functions

- Elements: chromosome representation, fitness function, selection, 
mutation and crossover

- A GA could take as input several user-defined domain-specific local 
distance functions and combine them to construct objective functions

- Research Question: How effective is a program synthesizer using an 
objective function that is evolved by means of a Genetic Algorithm?

2. Methodology

- Objective functions involving user-defined domain-specific local 
distance functions are evolved with the GeneticObjective GA.

Local distance functions used in our experiments

Elements of GeneticObjective

*(S: percentage of solved tasks, U: average percentage of unsolved examples over the unsolved tasks, R: 
average normalized runtime of Brute)

- Evaluation of GeneticObjective: experiments in the Robot and String 
domains, using the Brute synthesizer [1]. 

- Analyse the convergence of GeneticObjective

- Compare fitness value of best function found with the value 
obtained by the manually-designed objective function

3. Results

Robot Planning:
- Train set size=150, test set size=350
- Suboptimal solutions for pm=0.01 (premature convergence) and 

pm=0.16 (prevents convergence)
- Poor results for e=2

- Low value => lack of exploitation of the good solutions
- The diversity of the population affects the performance of the GA: 

Poor performance for a low value of pc=0.5
- There is only a single task => [w1, w2, w3] = [0, 0.9, 0.1]

String transformation:
- Train set size=150, 

test set size=225
- [w1, w2, w3] = [0.6, 0.3, 0.1]
- Poor results with high pm value

(0.2) (it resembles a random search)
- Most configurations led to similar results

- H, p and G do not significantly affect the performance of 
GeneticObjective

4. Conclusions

- The experiments we conducted showed that our approach is effective in 
both domains, by reaching or even surpassing the effectiveness of the 
manually-designed function.

- Low scores in the String domain could be attributed to the inherent difficulty 
of the domain. Thus, a more effective synthesizer would be required to 
obtain better results.

5. Limitations and Future Work

- Limited scope regarding the number of configurations tested and the 
number of trials per configuration.

- An interesting direction: integrate an existing manually-designed objective 
function in the fitness function of GeneticObjective.
- Consider the distance to the correct output, together with the 

percentage of examples/tasks solved and the running time
- Eliminate equivalent expressions
- Consider more complex objective functions, e.g. add conditional 

expressions.

Domain Manual fitness Best fitness GA Time taken

Robot 0.95 0.95 36m

String 0.24 0.29 98m
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