INFLUENCE OF SENSITIVY AND FREQUENCY ON THE MIDĜE

Author

Leon Kempen l.m.kempen@student.tudelft.nl

Supervisors

Hayley Hung h.hung@tudelft.nl Stephanie Tan s.tan-1@tudelft.nl Jose Vargas Quiros j.d.vargasquiros@tudelft.nl

Affiliaties

EEMCS, Delft University of Technology

1. Research Topic

- How does the sampling rate and sensitivity influence the performance of the DMP of the Midge?
- Test the effects of changing the sensitivity (FSR) of the Midge.
- Test how changing the frequency

2. Background

- The DMP measurements of the Midge is comparable to a phone [1]. However this is tested mainly on the x-rotation axis of the Midge.

- Further testing was needed to find if changes in sampling rate and sensitivity influence the performance.

3. Methodology

- Analysis of the datasheet for possible configurations of the Midge.

- Perform the same movement with two Midges and an high-end Xsens IMU strapped together for the different configurations.

- Parse the measured data of the

- The new tests should also include more degrees of freedom to mimic human motion more closely.

Xsens and the Midges to compare them, both in raw values, the measurements of the sensors, and the interpreted values, the quaternions.

5. Conclusion

- Changing the FSR does not influence the performance of the sensors or the quaternions.

- Changing the frequency does not affect the performance of the sensors, but does influence the DMP.

- The DMP works best with frequency of 150 Hz.

- Increasing the frequency more, leads to a decrease in accuracy.

- Further research could be done to find out why the MSE of the gyroscope fluctuates much more than the MSE of the accelerometer.

References

[1] Bent Engbers. "A rotation experiment on the Digital Motion Processor of the Midge". 2022. URL: http://resolver.tudelft.nl/uuid:f6e60c08-2aff-4f4a-baf5-5647711573dc.

4. Results & Discussion

Accelerometer							
	Acc	Hz	MSE x	MSE y	MSE z		
22	4	50	0.002	0.001	0.001		
С) Ц	4	100	0.003	0.001	0.004		
all	4	150	0.006	0.002	0.005		
E	4	200	0.002	0.001	0.006		
01	4	250	0.001	0.001	0.002		
2	16	50	0.005	0.002	0.005		
Ч С	16	100	0.001	0.001	0.002		
Ð	16	150	0.002	0.001	0.001		
ш	16	200	0.001	0.000	0.001		
Ĩ	16	250	0.012	0.003	0.006		

Accelerometer of Midge 37

the MSEs of the Accelerometer are relavitely consistent regardless of FSR and frequency.

Tables 3 and 4 show that the MSEs of the Gyroscope are fluctuate more but not correlated with FSR nor frequency.

Gyroscope

7.29

6.21

9.13

11.25

4.95

3.81

2.99

3.99

4.97

5.10

Table 3. Averaged MSE of the

Gyroscope of Midge 37

MSE y

8.67

6.16

12.00

12.52

6.77

3.00

4.87

3.82

3.24

5.65

MSE z

6.60

3.99

8.09

7.82

6.57

6.33

2.42

2.82

2.63

5.47

Hz MSE x

50

100

150

200

250

50

100

150

200

250

Gyr

500

500

500

500

500

2000

2000

2000

2000

2000

	Acc	Hz	MSE x	MSE y	MSE z
\simeq	4	50	0.005	0.002	0.002
Small FS	4	100	0.004	0.002	0.005
	4	150	0.008	0.005	0.010
	4	200	0.005	0.005	0.010
	4	250	0.004	0.003	0.002
\sim	16	50	0.005	0.002	0.010
e FSF	16	100	0.004	0.003	0.006
	16	150	0.002	0.002	0.003
<u>60</u>	16	200	0.003	0.002	0.003
La	16	250	0.004	0.001	0.003
	Large FSR Small FSR	Acc 4 4 4 4 4 4 4 16 16 16 16 16 16	Acc Hz 4 50 4 100 HE 4 200 4 250 4 250 16 50 16 100 16 150 16 200 HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ	Acc Hz MSE x 4 50 0.005 4 100 0.004 Te 4 150 0.008 4 200 0.005 4 4 200 0.005 4 4 250 0.004 16 55 16 100 0.004 16 150 0.002 16 90 16 200 0.003 16 250 0.004 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2. Averaged MSE of the Accelerometer of Midge 48

Gyr	Hz	MSE x	MSE y	MSE z		
500	50	4.86	6.39	8.44		
500	100	6.28	5.44	8.41		
500	150	16.27	19.01	15.38		
500	200	21.75	17.17	11.90		
500	250	11.39	8.65	10.08		
2000	50	38.56	63.80	36.77		
2000	100	8.92	11.76	7.57		
2000	150	4.30	4.45	5.29		
2000	200	9.10	6.93	10.41		
2000	250	5.59	6.91	5.43		

Table 4. Averaged MSE of the Gyroscope of Midge 48

Quaternions						
Acc	Gyr	Hz	MSE x	MSE y	MSE z	
4	500	50	0.6686	0.2170	0.2172	
4	500	100	1.3035	0.2314	0.2315	
4	500	150	0.5452	0.1737	0.1740	
4	500	200	2.0503	1.1427	1.1429	
4	500	250	2.8344	0.1844	0.1847	
16	2000	50	0.2407	1.9444	1.9447	
16	2000	100	1.5593	0.2419	0.2421	
16	2000	150	3.1653	3.0247	3.0248	
16	2000	200	0.5476	0.0989	0.0990	
16	2000	250	0.6160	0.1703	0.1706	

Table 5. Averaged MSE of the Quaternions of Midge 37

Tables 5 and 6 show that the MSEs of the Quaternions are the lowest on 150 Hz regardless of FSR, for three out of four occurences.

A high MSE of the sensors does not imply an high MSE on the quaternion.

Acc	Gyr	Hz	MSE x	MSE y	MSE z
4	500	50	0.1451	0.0945	0.0947
4	500	100	0.1161	0.1173	0.1175
4	500	150	0.1115	0.1040	0.1042
4	500	200	0.1254	0.2327	0.2328
4	500	250	0.5193	0.1734	0.1746
16	2000	50	2.4556	0.1828	0.1830
16	2000	100	2.8883	0.1453	0.1454
16	2000	150	0.1423	0.0929	0.0929
16	2000	200	0.6593	0.1589	0.1592
16	2000	250	0.2893	0.1634	0.1636

Table 6. Averaged MSE of the Quaternions of Midge 48

Widge 48

Table 1. Averaged MSE of the

Tables 1 and 2 show that