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1. Background

Figure 1. (a) RGB camera (b) Event camera, Source: [1]

Events are represented as a tuple (x,y,ts,p)
- x and y: coordinates of an event
- ts: timestamp of an event
- p: polarity of an event (positive or negative)

Convolutional Neural Networks (CNNs) are
used for object detection

2. Research question & Hypotheses

What is the accuracy-efficiency trade-off of an object detection convolutional
neural network for using sparse event-based data instead of dense
image-based data?

1. Using event-based data is more efficient and similar in accuracy compared to
using images as input for an object detection CNN

2. Using event-based data can lead to a better accuracy for object detection than
image-based data at a similar efficiency.

3. Method

Event-based data can be represented in multiple ways [2]. The representations used are
listed below:

Image representation: 128 by 128 pixels in 3 channels: RGB

Time Frame representation: 128 by 128 pixels in 1 channel: greyscale

Point cloud representation: N points in 2 channels: X and Y

Point cloud representation: N points in 3 channels: X, Y and time

All event-based data is taken from the Neuromorphic Caltech101 dataset [3]. 2 experi-
ments are carried out:

1. Compare models on different event-based and image data
Model from figure 2
Model from figure 2 with sparse layers
Data selection: 4 classes (Car, Helicopter, Airplane, Motorbike)

2. Compare event-based and image data on YOLOv3 [4]
Time frame of different windows of time
Images
Data selection: 4 classes and entire dataset
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Figure 2. CNN model used, input: data in representations, output: detected object

4. Predictions

Figure 3. YOLOv3 predictions: image, TF 10ms, TF 25ms, TF 50ms

Figure 4. Time Frame & 2D point cloud predictions

5. Results

+ The accuracy-efficiency trade-off for using events is better with the sparse model
+ The time frame of events input performed better than images when using a larger time window
− The accuracy of using images is better when the entire dataset is taken as input

(a) Trade-off results from conventional model (b) Trade-off results from sparse model

Figure 5. Comparing results of conventional vs sparse model
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Figure 6. YOLOv3 accuracy results, TF = Time Frame of events

6. Conclusion

1. The accuracy-efficiency trade-off for using event-based data is: a small loss in accuracy and large
gain in efficiency.

2. With the best model and the best event-based data representation the accuracy-efficiency trade-off
can be even better.

7. Future work

Use a model that fully exploits the sparsity of events to test whether the accuracy-efficiency trade-off
can be improved, an example is [5].

Find the best event-based data representation as input to a neural network.

Test whether using events with color values can increase the accuracy for object detection.

Use a more realistic event-based datasets like the Prophesee 1 megapixel automotive detection
dataset [6].
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