Using Nearest Neighbours to Evaluate Overlap in Causal Inference

Background

Causal Inference: evaluating if a treatment was the "cause" of the effect observed. [1].

Usually achieved by creating two classes, one with treatment and one with none.

Assumption: there needs to be overlap between those classes

Nearest Neighbours: algorithm that uses proximity to make predictions about the grouping of an individual data point. [2]

K-Nearest Neighbours and Radius Neighbours

Algorithm 1 Nearest Neighbours	
1:	function ESTIMATE_OVERLAP(X, y, ϵ , params):
2:	overlapping_region \leftarrow []
3:	for point p in X do
4:	all_overlap $\leftarrow True$
5:	$proximityPoints \leftarrow get_promixity_points(p, params)$
6:	for class c in y do
7:	dens \leftarrow estimate_density(proximityPoints in c)
8:	if $dens < \epsilon$ then:
9:	all_overlap ← False
10:	end if
11:	end for
12:	if all_overlap then:
13:	overlapping_region $\leftarrow p$
14:	end if
15:	end for
16:	return overlapping_region
17:	end function

Figure 1: Overall pseudo code for the Nearest neighbours' methods.

Methodology (1)

Dataset Production

Samples: *numpy.random.normal(mu, sigma, (n, dim))* **True Overlap:** *stats.norm.pdf(samples)*

Metrics

Intersection over Union: metric to quantify how much the true and predicted areas overlap.

IoU_{area} = Area of Overlap/Area of Union (2-Dimensions) \succ IoU_{point} = TP/(TP+FP+FN) (N-Dimensions)

Author: Jort Vincenti, in affiliation with TU Delft, Rickard Karlsson, Jesse Krijthe

Methodology (2)

Experiments

How sensible are the models to parameter change? > Graph performance with different parameters Compare to well established methods? > Graph performance for different model on Iris dataset.

Models

- **1.** *K*-*Nearest Neighbours* [3]: returns *k* nearest points of *p*. *Parameter:* $k = C_0 * n^{4/5}$ Density Estimators: > LOF = $(k_{class}/n_{class}) \times 1/(V_d \times d(p, p_k))^1$ $> LRD = (k_{class}/n_{class}) \times k/(\Sigma d(\rho, \rho_{class}) \times V_{d} \times 2)^{1}$
- **2. Radius Neighbours:** returns all points of radius r of point p. Adaptive Radius: point distance to decision boundary Large Distance = Small Radius and vice-versa

Density Estimator: $(k_{class}/n_{class}) \times (1-\Sigma d(\rho, \rho_{class})/\Sigma d(\rho, \rho_{neigh})^{1}$

Figure 2: Density estimators based on distribution (a)

(a) Distribution

(b) Density estimate

Figure 4: Radius Neighbours density estimator based on (a)

Observations (1)

Figure 3: No best C_0 or k can be found as this depends on the distribution and its type

Figure 4: The radius doesn't need to be tuned but fails for edge cases

Figure 5: The area of overlap is more varied then **(b)** > The low k implies high dependency on the neighboring points

[1] Rubin, D., & Zell, E. (Eds.) (2018). . (Vols. 1-4). SAGE Publications, Inc., https://doi.org/10.4135/978150632613 [2] IBM. "What is the k-nearest neighbors' algorithm?" URL: <u>https://www.ibm.com/topics/knn</u>. [3] Campos G.O. Zimek A. Sander J. et al. "On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study." In: Data Min Knowledge Disc 30 (2016), pp. 891–927. URL: https://doi.org/10.1007/s10618-015-0444-8.

p_k: k'th point p

Comparison

Figure 5: Predictions of each model on the Iris dataset

Observations (2)

Conclusion

The models can evaluate overlap, however: > Too much dependency on parameters. > Variation from established methods.

The results aren't reliable for sensitive fields (i.e. clinical studies), but can still be used for other purposes (i.e. ML).

References

1 k_{class}: number of points from class c within k range n_{class}: total amount of points from class c V_d: d dimensional volume

p_{class}: points form the class p_{neigh} : all points in neighbourhood of p d(p, p_{class}): distance from the point p to a