
AUTHORS

Paris Loizides
p.loizides@student.tudelft.nl

 Prof. Dr. Arie van Deursen
Assistant Prof. Dr. Maliheh Izadi

ir. Jonathan Katzy

01. Introduction
Large Language Models (LLMs) like GPT and
BERT have:

Revolutionized software development by
significantly enhancing coding efficiency.
Shown broader educational benefits.

Despite these advancements:
 Performance disparity exists in non-English
programming environments.

 limits the global applicability of such
technologies.

This research seeks to address this gap by
examining how LLMs perform across Java code
summarization tasks when applied to non-
English languages, with a particular focus on the
Greek language on StarCoder 2.

03. Methodology
Model:
StarCoder 2 was selected for its high performance in code-related
tasks and its training using the Fill-in-the-Middle (FIM) objective.

Quantitative Analysis
1) Accuracy Rate (Ability of model to correctly summarize
 code snippet)
2) BLEU Score (Bilingual Evaluation Understudy)
3) ROUGE Score (Recall-Oriented Understudy for Gisting Evaluation)
4) Semantic Similarity (using Multilingual Sentence Transformers)

Tokenization Experiment

Compare information density of 3 distinct tokenizers on Greek
comments to determine the effect of Mathematical documents on
tokenization and training of LLMs.

Open Coding

Develop Hierarchical Error Taxonomy in collaboration with
research team using open coding approach.
Identify most frequent errors for the Greek language using
StarCoder 2.
Qualitatively analyse data.

06. Results - QuantitativeExtract block comments and line comments

Dataset Filtering

01 Java files from GitHub that include Greek key-words

Files exceeding context window of 8,192 tokens

Greek Dataset Creation

Large Files

02

03
04

05

Remove identical versions of the same file

Files that do not have any type of comments

Deduplication

No Comments

Comment Extraction

 LLM of Babel: Evaluation of LLMs on code for
non-English use-cases
A Thesis Submitted to EEMCS Faculty Delft University of Technology

02. Research
Questions:
Our study makes several key contributions:

RQ1: What types of errors are most common in
Greek and other non-English languages, and how
can a hierarchical error taxonomy help guide
future developments in LLM technology?

RQ2: How does the tokenization process of
prompts affect the performance of LLMs in
recognizing Greek and generating comments?

RQ3: What is the quantitative performance of
StarCoder 2 in code summarization when
prompted with Greek-documented code snippets?

04. Results - Taxonomy

07. Conclusion and Future Work
Identified the most common errors for the Greek language using the established hierarchical error taxonomy.
Tokenization experiments provided insights into training data and tokenizer design.
Found Semantic Similarity metric more effective than BLEU and ROUGE for multilingual evaluation.
Future research should refine taxonomy by extending research to Greeklish and other languages and analyze
The Stack v2's Greek corpus for a better understanding of the Greek language in coding environments.

05. Results - Tokenization

Tokenizers:
StarCoder 2
Meltemi-7B-v1: first Greek LLM
OpenWebMath Dataset Custom Tokenizer

Comments Pre-processing

Remove non-Greek comments
06 Language Filtering

<fim_prefix>pre_code<fim_suffix>suf_code<fim_mid>
07 FIM Spanmasking

Most common Errors:
181 - Code To run
 89 - Copying Context
 88 - Excluded
 64 - Educated Guess
 32 - Late termination
 29 - Verbatim Repetition
 24 - Memorization

Significant Co-occurance:
(x, SE-CS2): >69%

all labels highly co-occur with code generation
(SE-CS2, MS-CC): 45%

code snippet generation co-occurrance with copying context
from file

(SE-CS2, SE-HA3): 27%
code snippet generation co-occurrance with hallucination
grounded to context

(MS-ME3, MS-CC): 52%
when memorization occurs, generation includes copied
context
showcases overfitting on Greek documented files due to
limited available resources and forking of Greek repositories

StarCoder 2 Vs OpenWebMath
Similar total tokens average
Low information density of individual letter
tokenization

StarCoder 2 Vs Meltemi-7B-v1
3x better information density of Greek tokenizer

0.1% 1.8%

46%

Meltemi-7B-v1

OpenWebMathStarCoder 2

Greek Tokens

Accuracy Rate:
Manual labelling yields 49% of predictions to
correctly describe code.

 Effectiveness of Evaluation Metrics:
Semantic Similarity best differentiates among
Correct and Incorrect predictions showing a larger
gap, uniform distributions and no outliers.

Kernel Density Estimation (KDE) shows the effect
of context length

Correct Predictions: Semantic Similarity: 0.5
 File token length: 1000 tokens

Incorrect Predictions: Semantic Similarity: 0.3
 File token length: 500 tokens

SUPERVISORS

