
AUTHOR

Ata Ertuğ Çil
A.E.Cil@student.tudelft.nl

SUPERVISORS

Moritz Zanger
Matthijs Spaan

Effects of Partial Observability Solver
Methods on Training and Final

Policies in Autonomous Driver RL 
 01. Introduction

Autonomous driving is a complex problem that can be solved
using artificial intelligence. However as the environment is not
fully observable and changing constantly, many different
methods are investigated to be able to make agent
comprehends the state fully. In this study, we focused on
methods that solve partial observability.

Related literature

[1]Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.
[2] Madhuparna Bhowmik. Deep recurrent q-network, Jan 2019.
[3] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps, 2017.
[4] Cl ́ement Romac and Vincent B ́eraud. Deep recurrent q-learning vs deep q-learning on a simple partially
observable markov decision process with minecraft, 2019.
[5] Rian Dolphin. LSTM networks: A detailed explanation. Medium, Dec 2021.
[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

04. Methodology

Setting up CARLA in Delft
Blue[1] (supercomputer of
TU Delft) and connecting it
with the Gymnasium
framework
Create 3 agents, all of which
use DQN as a base. One uses
frame stacking, one uses
LSTM and one uses both.
Check agents in a game-like
environment, then train
them in a Carla environment.
Run each agent 10 times in 3
different tracks to test the
robustness and collect data.

06. Results in Training Phase

DRQN with frame stacking started
learning earlier, experienced catastrophic
forgetting between 360k and 500k time
steps, and finished with the lowest
episodic return.
All agents were similarly efficient at
updating their Q values at the beginning.
DQN with frame stacking finished
training faster than other agents with the
highest episodic return.

07. Results in Evaluation Phase

DQN with frame stacking: High performance, low robustness
DRQN: lower performance, higher robustness. 
DRQN with frame stacking: performed worse, overall robustness is considered
compromised.

08. Conclusion

LSTM is not suitable for Car driving
agents, as much as frame stacking
is.
LSTM is more robust which is a
trade-off between performance and
robustness.
When LSTM and frame stacking is
combined, even though it learns at
earlier time steps, it creates an
unstable agent.
LSTM adds complexity to the agent's
network, which increases the need
for resources and increases the time
required to finish training.

 The standard deviation of 3 agents 10 episodes in 3 different
tracks

03. Background

Adding LSTM changes
DQN to Deep Recurrent
Q Network (DRQN),
stores hidden states. 
In training, it uses
Backpropagation
Through Time (BPTT),
uses the last n time
steps.

LSTM (lONG SHORT TERM
MEMORY):

Input becomes 4 frames combined instead of 1.
FRAME STACKING:

05. Limitations

Running the simulation is
resource heavy.
Not possible to capture real-
life experiences.

The agent does not know the current state fully - Partially
Observable Markov Decision Process (POMDP).
Knows the current state - Markov Decision Process (MDP) 
Methods make POMDP to MDP

MDP vs POMDP:

02. Research question

How do different methods for dealing with partial
observability in the environment influence training and

the robustness of final policies under various testing
conditions?

Mean episodic return of 3 agents 10 episodes in 3 different
tracks 

Smoothed temporal difference (TD) loss in the training process
of agents

Smoothed Episodic lengths in the training process of agents

Smoothed Episodic returns in the training process of agents

LSTM Cell[5]


