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BACKGROUND OBJECTIVE METHODOLOGY EXPERIMENTS

e Federated Learning is a type of This literature study aims to 7 Different HFL frameworks were e Two of the frameworks have
distributed machine learning answer the following questions: studied. For each of them a

* In HFL, data on each client has theoretical analysis was performed
the same set of features

e Classic HFL algorithm is

been simulated to reproduce
experiments

to determine: e The convergence and accuracy
1. The time complexity
2.Communication cost

3. Security/privacy guarantees

1.How is Horizontal Federated
Learning implemented? of the final models was assessed
vulnerable to: 2.What privacy and
o inferrence attacks

o model/data poisoning

e Most of the results were

performance trade-offs are successfully reproduced

made when designing HFL

e These mitigated at the cost of frameworks? For two of the frameworks Dataset Original Accuracy | Reproduced Accuracy
Credit Card 81.09 78
performance and accuracy, 3.How do HFL frameworks experiments have been Breast Cancer | 95.62 9591
Audit Data 97.42 97.4359

using:
o Differential Privacy

reproduced to assess the accuracy
of their resulting models.

compare in terms of

computational complexity,
o Homomorphic Encryption

o Secure Multi-Party
computation

communication cost and
privacy guarantees?
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Framework Time Complexity
Classic HFL ORx*(T+C=*8S))
FRAMEWORK ANALYSIS FederBoost O(M xlogN * (logn +C)) + M xn+ M x C) CONCLUSION

Peer-to-Peer MPC:
¢ Models are trained on each participant - O(T)
e Gradients are aggregated using the Additive
Secret-Sharing MPC Protocol[1]:
o Each participant generates C secret shares
for their gradient, sends 1 to each of the
other participants - O(C*S)
o Secret shares are summed locally, then the
sums are broadcasted and summed to obtain

Framework Privacy-preserving measure Ensures privacy against
final r _ * Classic HFL None None
al results - O(C*S) FederBoost Simplified Masking Protocol Honest-but-curious clients

Using summaries of private data | Fully-dishonest, curious (and colluding)

GRAFFL . ! " :

Two-Phase-MPC Not sharing gradients/weights server and/or clients
WO- - — . -
SplitFed Differential Privacy Fully-dishonest, curious (and colluding)

¢ A committee of K participants is elected - O(C)
e Each participant generates K secret shares,

. MPC collusion
sends them to committee- O(K*S) Two-Phase Secure MPC Honest-but-curious participants without
° i - *S 4+ MPC collusion
The committee aggregates the shares - O(C*S TT.OP eEdi o o Uikown
. -
K*S) PFMLP Homomorphic Encryption Honest-but-curious server, keyserver and

e The committee sends the result to each
participant - O(C/K*S)
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SplitFed
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Peer-to-Peer MPC | O(R x (T 4+ C % S))
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server and/or clients

Fusion Learning

Not sharing gradients/weights

None

Peer-to-Peer

Secure MPC

Honest-but-curious participants without

clients without collusion

e Multiple approaches exist to
HFL each with their own
advantages and disadvantages
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