Horizontal Federated Learning Frameworks

AUTHORS

Márton Soos - 4913760 - m.soos@student.tudelft.nl

Responsible Professor: Dr. Kaitai Liang Supervisor: Rui Wang

BACKGROUND

- Federated Learning is a type of distributed machine learning
- In HFL, data on each client has the same set of features
- Classic HFL algorithm is vulnerable to:
 - inferrence attacks
 - model/data poisoning
- These mitigated at the cost of performance and accuracy, using:
 - Differential Privacy
 - Homomorphic Encryption
 - Secure Multi-Party

OBJECTIVE

This literature study aims to answer the following questions:

- 1. How is Horizontal Federated Learning implemented?
- 2. What privacy and performance trade-offs are made when designing HFL frameworks?
- 3. How do HFL frameworks compare in terms of computational complexity, communication cost and

3

METHODOLOGY

7 Different HFL frameworks were studied. For each of them a theoretical analysis was performed to determine:

- 1. The time complexity
- 2. Communication cost
- 3. Security/privacy guarantees

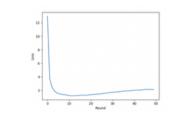
For two of the frameworks experiments have been reproduced to assess the accuracy of their resulting models.

5

EXPERIMENTS

- Two of the frameworks have been simulated to reproduce experiments
- The convergence and accuracy of the final models was assessed
- Most of the results were successfully reproduced

Dataset	Original Accuracy	Reproduced Accuracy
Credit Card	81.09	78
Breast Cancer	95.62	95.91
Audit Data	97.42	97.4359



computation

privacy guarantees?

4

FRAMEWORK ANALYSIS

Peer-to-Peer MPC:

- Models are trained on each participant O(T)
- Gradients are aggregated using the Additive Secret-Sharing MPC Protocol[1]:
 - Each participant generates C secret shares for their gradient, sends 1 to each of the other participants - O(C*S)
 - Secret shares are summed locally, then the sums are broadcasted and summed to obtain final results - O(C*S)

Two-Phase-MPC

- A committee of K participants is elected O(C)
- Each participant generates K secret shares, sends them to committee- O(K*S)
- The committee aggregates the shares O(C*S + K*S)
- The committee sends the result to each participant - O(C/K*S)

Framework	Time Complexity
Classic HFL	O(R*(T+C*S))
FederBoost	O(M * logN * (logn + C)) + M * n + M * C)
GRAFFL	$O(C + T_{SuffiAE} + R * n * d + R * N * log(R * N))$
SplitFed	$O(R * (S_C + L_S + C * L_C))$
Fusion Learning	$O(M + T_L + C * (S_L + ng) + T_G)$
Peer-to-Peer MPC	O(R*(T+C*S))
Two-Phase MPC	O(C + R * (T + K * S + C * S + C/K * S))
FLOP	$O(R*(T+C+S_S))$
PFMLP	$O(R*(T+k^2*\alpha*S+C*S))$

Framework	Privacy-preserving measure	Ensures privacy against
Classic HFL	None	None
FederBoost	Simplified Masking Protocol	Honest-but-curious clients
GRAFFL	Using summaries of private data	Fully-dishonest, curious (and colluding)
	Not sharing gradients/weights	server and/or clients
SplitFed	Differential Privacy	Fully-dishonest, curious (and colluding)
		server and/or clients
Fusion Learning	Not sharing gradients/weights	None
Peer-to-Peer	Secure MPC	Honest-but-curious participants without
MPC		collusion
Two-Phase	Secure MPC	Honest-but-curious participants without
MPC	Secure MIPC	collusion
FLOP	Only sharing part of model	Unknown
PFMLP	Homomorphic Encryption	Honest-but-curious server, keyserver and
		clients without collusion

6

CONCLUSION

 Multiple approaches exist to HFL each with their own advantages and disadvantages

RELATED LITERATURE

[1] Renuga Kanagavelu et al. "Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning". In:2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). 2020, pp. 410-419.DOI: 10.1109 /CC Grid49817.2020.00-52.