
FUTURE WORK

RESULTS

BACKGROUND: PROGRAM SYNTHESIS

EVOLVING A LANGUAGE FOR PROGRAM SYNTHESIS

Research done by Philip Tempelman (p.i.tempelman@student.tudelft.nl), supervised by Sebastijan Dumančić (s.dumancic@tudelft.nl) for Delft University of Technology BSc Computer Science & Engineering Bachelor Thesis

METHODOLOGY: GENETIC ALGORITHM

Domain-Specific Language. For example:
MoveUp, MoveRight,

MoveDown, MoveLeft, Grab

CHROMOSOME

FITNESS
Calculated by using the chromosome as the

language for a set of program synthesis tasks

CROSSOVER

MoveUp, MoveRight,

MoveDown, AtTop, AtLeft,

crossover

MoveRight, MoveLeft, Grab,

AtBottom, AtLeft, AtRight

C
h

ild
ren

MoveUp, MoveRight, MoveDown,

MoveLeft, Grab, AtTop

MoveRight, AtLeft, AtBottom,

AtRight

P
ar

en
ts

[LoopWhileThen (NotAtBottom [MoveDown], [Grab]),

MoveUp, MoveRight]

Some composite predicates are created frequently to solve tasks,
adding these to a language may decrease its search time

We consider these composite predicates based on how frequently
they appear in a successful program:

MoveUp, MoveRight, MoveDown, MoveLeft, Grab, AtTop

MoveUp, MoveRight, MoveDown, MoveLeft, Grab, AtTop,

LoopWhileThen (NotAtBottom [MoveDown], [Grab]),

add composite

MoveUp, MoveDown, MoveLeft,

Grab, AtTop

MoveUp, MoveDown, MoveLeft,

Grab
remove

Unnecessary predicates only lead to increase in search time

MUTATION

Task: bring the ball to the flag

input output

MoveDown, MoveDown
MoveDown, MoveRight

Grab

MoveRight, MoveUp
MoveRight, MoveUp

[MoveDown, MoveDown, MoveDown,
MoveRight, Grab, MoveRight, MoveUp,

MoveRight, MoveUp]
Optimal program:

RESEARCH QUESTIONS
MOTIVATION

1) The domain-specific language heavily influences the size of the search space

2) The size of the search space heavily influences the program synthesis time

3) Designing a domain-specific language is a complex optimisation problem

4) Genetic algorithms have proven to be useful for complex optimisation problems

QUESTIONS

“Automatically finding a program in the
underlying programming language that

satisfies the user intent.”

“Uses biologically inspired operators to generate
high-quality solutions to optimisation problems by
evolving a population of chromosomes over many

generations.”

Main question

“Can we evolve a programming language to
speed up program synthesis?”

Research questions
1. How can we translate a DSL into a chromosome?
2. How can we add composite predicates to a DSL?
3. How can we use genetic programming techniques to evolve a DSL?
4. How does a program synthesiser using an evolved DSL compare to one
using the standard DSL?

THREE DOMAINS
string domain

Task: to transform a string
into a derived string.

Input: a string.
Output: a different string.

robot domain

Task: to pick up a ball and
bring it to the flag.

Input: a grid with a robot,
ball, and flag.
Output: a grid with the
robot and ball at the flag.

pixel domain

Task: to copy a given
drawing.

Input: blank canvas.
Output: canvas with
the copied drawing.

Program synthesiser finds a
program that transforms the

input into the output.

Input = the state the program
starts at.

Output = the desired final state.

EVOLVED DOMAIN-SPECIFIC LANGUAGES

CONCLUSION
WHAT IS SHOWN

○ Evolved languages speed up program synthesis in each domain considerably
○ Using evolved languages solved same number or more tasks
○ Evolved languages all had less predicates than original counterparts
○ Adding composite predicates to the language is not worth it, even when only evolving for
the 10% most complex tasks
○ For domains robot and pixel it is not worth it to be able to create composite tokens

SUGGESTIONS
○ For some domains, some predicates are necessary (e.g. ‘draw’ when the task is to draw).
These predicates should be harder to remove and easier to add, could be based on how often
predicates appear in successful programs.
○ Some composite predicate types are never found in successful programs. Could consider to
include these types in chromosomes, because they might be useless and they contribute very
heavily to search space size.

string

MoveRight, MoveLeft,

MakeUppercase, MakeLowercase,

AtEnd, NotAtEnd, NotAtStart,

IsLetter, IsNotLetter, IsUppercase,

IsNotUppercase, IsNumber,

IsNotNumber, Drop

robot

MoveUp, MoveRight, MoveDown,

MoveLeft, Drop, Grab

pixel

MoveUp, MoveRight, MoveDown,

MoveLeft, Draw

MoveUp, MoveDown, MoveLeft,

AtTop

MoveUp, MoveDown, MoveLeft,

AtTop, Grab

Some predicates are necessary to solve more tasks

add

PROGRAMMING BY EXAMPLE VAST SEARCH SPACE

[]

With 10 language predicates & creating a program of length 10
= 10.000.000.000 potential programs

1

2

3

4 5

6

mailto:p.i.tempelman@student.tudelft.nl
mailto:s.dumancic@tudelft.nl

