
Proving the Absence of Bugs
Case Studies on Automated Formal Verification of Java Programs Using

What does ‘correctness’ even mean?

What are the logical foundations
and how does KeY work in practice?

What kind of guarantees can it give?

What assumptions does it make?

How did we answer these questions?
We performed two case studies where we -
 • verified a key-value store
 • partially verified the insertion sort
 sorting algorithm

This involved providing specifications such
that the prover could automatically verify
that our implementations adhered them.

Why bother with formal verification?
 → To avoid the devastating impact of
 bugs in critical systems.

What is KeY?
 → KeY is a semi-automatic deductive
 verifier for proving the correctness of
 Java programs.

Tejas Kochar1

T.Kochar@student.tudelft.nl
Supervisors: Benedikt Ahrens , Kobe Wullaert1 1

EEMCS, TU Delft, Netherlands1

It takes programs with pre and post conditions
provided as annotations in comments:
/*@ requires x > 0;
 @ ensures x > \old(x);
 @ // Example of a contract @*/
 void double() { this.x *= 2; }

Correctness for KeY means proving that programs adhere to their specifications.

It can provide guarantees about functional and some non-functional properties
like information flow and resource usage for sequential Java 7 code. However, it
cannot directly check for some errors like StackOverflowError.

It makes assumptions like not allowing Objects to be null, not allowing integers
overflows, etc. Many of these assumptions can be adjusted in its settings

Key takeaways:
 • KeY is capable of verifying complex software. It has been used to find bugs
 in OpenJDK’s LinkedList and Tim Sort, used by apps on billions of devices.

 • It has a steep learning curve. It relies on user interaction for guidance,
 requiring an in-depth knowledge of the underlying proof theory.

• Getting feedback on why proofs fail is difficult as it
 requires inspecting the unfinished proof. Because of
 this, it cannot replace testing, which provides easy-
 to-understand feedback fast.

How does KeY verify correctness?

Each contract is reduced to a sequent:
P ∧P ∧...∧P ==> Q ∨Q ∨...∨Q 1 2 n 1 2 m

Each term in the sequent is a (Java) Dynamic
Logic expression and can be written as p → [q]r
where [q]r is a ‘modality’ stating that r holds
after executing q.
Thus, the contract for double() will be written as
true ==> x > 0 → [this.x*=2;]x > \old(x)
Symbolic execution is used to reduce code to
logic statements, keeping track of state changes.
Logical inference rules are applied to rewrite the
sequent until its validity can be established, or
no more rules can be applied automatically, in
which case the user can apply rules by hand to
guide the prover

Picture of the Antares rocket exploding after take-off. The reason for the explosion was not a software bug in this case.
Ariane 5 flight V88 is an infamous example of an explosion due to a bug, but the pictures aren’t as pretty.

mailto:T.Kochar@student.tudelft.nl

