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Figure 1: A small
excerpt of
subject 1
reading a
magazine.
Fixations are In
red over the raw
grey data.

Figure 2: Small
excerpt of subject
/ reading a novel.
The top to bottom
reading style is
apparent.
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Figure 3: All features and their
importance ranked. The first 9 are
the direction based-features.
Following are the rest ordered by
Importance
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