1. Background

- 1. Eye based trackers are becoming more popular.
- 2. Gaze estimation can provide useful context [1], for example attention monitoring while driving, gaming [2].

2. Problem analysis

1. There is a gap in research on analyzing impact of using different feature extraction methods on recognizing different sedentary activities (browsing, reading etc)

3. Research Question

- What are the best features to extract to be used for training conventional machine learning algorithms, e.g. k-NN, SVM, and decision tree?
- How do the results compare to results obtained by deep learning, or using different data?

Eye tracking-based Sedentary Activity Recognition with Machine Learning

Julian Meijerink, <u>i.a.m.meijerink@student.tudelft.nl</u>, Supervised by Guohao Lan, Lingyu DU

4. Method

3.

4.

5.

6.

1. Preprocess by normalizing, filtering outliers 2. Use peak- and median filter to estimate fixations Extract features out of fixations and saccades Split data both user dependent and user independent Use K-NN, SVM and Random Forest Tree to classify Fine-tune parameters and window sizes used for results

	Paper 1		Paper 2			
Algorithm	CNN		LSTM			
					S	
	dep	ind	dep	ind	Classifier	de
Sedentary	0.99	0.69	0.98	0.67	K-NN	0.
Desktop	0.99	0.39	0.95	0.32	SVM	0.
Reading	0.99	0.67	0.98	0.31	Forest	0.

5. Results

Deep learning performed extremely well on user dependent evaluation, but performed less impressive on user dependent evaluation.

Figure 1: A small excerpt of subject 1 reading a magazine. Fixations are in red over the raw grey data.

Figure 2: Small excerpt of subject 7 reading a novel. The top to bottom reading style is apparent.

Figure 3: All features and their importance ranked. The first 9 are the direction based-features. Following are the rest ordered by importance