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1. Introduction

Background: Collaborative Filtering (CF) learns from past user-item interactions to make person-
alized recommendations. Widely used by platforms like Netflix, Spotify, and Amazon.

Problem: Fairness in Recommender Systems

e User-side: Some groups get lower-quality or less relevant recommendations.
e ltem-side: Long-tail items are under-recommended (popularity bias).

e Bias amplification: Demographic and behavioral imbalances are reinforced.
e Impact: Lower exposure diversity; marginalized users and content.

Gap: Few studies conduct standardized, controlled model comparisons. Fairness interventions
add complexity — hard to isolate models’ inherent behavior.

2. Research Questions

e RQ1: How do different CF models perform on accuracy, user fairness, and item fairness?
e RQ2: What trade-offs arise between accuracy and fairness across model architectures?

e RQ3: How do trade-offs vary across datasets with different sparsity, popularity bias, and
user activity imbalance?

3. Methodology

We compare 6 CF models to analyze how their architectural design influences accuracy-fairness
trade-offs on two real-world datasets. Fairness is assessed at the group level.

Datasets Models Compared
e Both: Skewed popularity and activity e Baselines: Popularity, Random
distributions. e Matrix Factorization: BPR

e Movielens 1M (ML-].M): e Linear: SLIMElastic
e Denser dataset; stronger popularity bias. '

e User groups: Gender, Age, Activity e Neural: NeuMF

e Item group: Popularity e Graph-based: LightGCN
e Book-Crossing (BX):

e Sparse dataset; stronger activity bias.

e User groups: Activity, Preference (popularity-based)

e |tem group: Popularity

Evaluation Metrics
e Accuracy: Recall, Precision, NDCG,
MAP, Hit Rate
e User Fairness: Group-wise accuracy,
dispersion (MAD, STD)

e Item Fairness: Coverage (IC), Tail%,
Entropy, Gini, Avg. Popularity

Evaluation Setup
e Framework: RecBole, WE&RB

e Split: 80/10/10 train/val/test, grouped by user
e Negative Sampling: Uniform, n =1

e Ranking Protocol: Full ranking over all items

e Interaction Order: Randomized

e Tuning Objective: Max NDCG@10 on validation
set

Dataset Users ltems Interactions Sparsity User Skew Item Skew

ML-IM 6,040 3,706 1,000,209  95.5% 2.74 2.81
BX 6,851 9,085 114,978  99.8% 39.13 6.39

Table 1. Dataset characteristics. Skewness is the third standardized moment (via scipy.stats.skew).
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4.

Key Results

RQ1: Accuracy and Fairness Across Models

e Accuracy: Rankings are consistent across metrics.

e Item-side fairness: Generally stable across metrics,
but diverges on BX (Tail%, Avg. popularity).

e User-side fairness: Rankings vary by metric, group,

Model Accuracy Item Fairness User Fairness
SLIMElastic k% kkx  kicveiyy L SARARA G
LightGCN  Hkkkve  dkkky 18, QARG
BPR 1.0.0 S O I & & GXQA¢ 1.8, 8, BA R
NeuMF 1. 0. SAOI AR & SAGEGAS 1.0, 8, SAOA¢
Pop KIEHTCTE  Tovoeveyy 1. 8.8. 6. §%¢
Random WWRWWIW dkkkk 1. 0.0.0.0 ¢

and dataset — less stable than item-side fairness.

Table 2. Overall model performance. More stars = better.

— All models favor head items; some improve tail exposure slightly.

— Male users and bestseller-preferring users get higher accuracy.

— Active users are generally better served:
e LightGCN: Favors cold users (both datasets).
e SLIM: Favors cold users (ML-1M), active users (BX).
e BPR: Favors active users (ML-1M), cold users (BX).

RQ2: Trade-offs Between Accuracy and Fairness
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Figure 1. User-side fairness trade-offs. Top: ML-1M
(by activity); Bottom: BX (by popularity preference).
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Overall trend: Higher accuracy = greater unfairness (esp.

user-side).

ltem-side fairness:
e LightGCN: Best accuracy-fairness trade-off.

e SLIMElastic: Prioritizes accuracy over fairness.

User-side fairness:
e Trade-offs are stronger; no clear winner.

e SLIMElastic: Worst fairness despite best accuracy.

— Fairness—-accuracy trade-offs depend on model
architecture.

— Item fairness # user fairness — they can diverge.
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Figure 2. Iltem-side fairness Trade-offs. Top: ML-1M; Bottom: BX.
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RQ3: Generalization Across Datasets
Model performance varies by dataset:

e BX (sparse): Amplifies performance gaps across models.

e NeuMF: Lower accuracy and item fairness on BX.

e SLIMElastic: Higher Tail% and Avg. Popularity exposure on BX.
e LightGCN, BPR: Nearly double item coverage on BX.

User group effects are dataset-specific:
e ML-1M: Activity group shows highest dispersion; varies by metric.

e BX: Preference group shows largest, most consistent disparities.

e Insight: Skewness £ Dispersion, Activity % Low Quality
BX has higher user skewness, but preference groups show greater disparities.
= Popularity bias may matter more than activity level.

Additional insights:
e Sparsity: Reduces accuracy, may improve item fairness (weakening popularity bias).
e Pairwise models: More robust to sparsity; fairer to low-activity users.

e Complexity A Better: Simpler models (e.g., SLIMElastic) could outperform deeper
ones.

e Group imbalance: Distorts fairness — e.g., male-heavy ML-1M (4331 vs. 1709) =
models favor male users.

5. Key Limitations

e User fairness hard to generalize: Varies by group, metric, and overlapping factors
(e.g., gender effects may stem from activity imbalance).

e Suboptimal model tuning: Some models (e.g., NeuMF) may improve with better
hyperparameter search.

e Limited dataset scale: Small datasets may not support deep models effectively.

e No statistical significance testing.

6. Conclusions and Future Work

Key Conclusions

e Model architecture shapes both accuracy and fairness outcomes.

e LightGCN: Best trade-off across datasets.

e ltem fairness # user fairness — both must be evaluated separately.

e Complexity # better results — simpler models often perform better.

e Sparsity strongly affects both accuracy and fairness.

e Skewness effects are nuanced — not always predictive of fairness dispersion.

Future Work

e Add statistical significance testing.

e Use more robust user fairness metrics.

e Explore individual-level and counterfactual fairness.
e Extend to broader model families and domains.
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