Using Large Language Models to Detect Deliberative **Elements in Public Discourse**

DETECTING SUBJECTIVE EMOTIONS Author: Bente Zuurbier Responsible professor: Luciano Cavalcante Siebert Supervisors: Amir Homayounirad & Enrico Liscio

1. Introduction

Public discourse

- Allows people to express their opinions
- Mediated discourse helps people understand each other and change their point of view [1][2]
- Scaling up public discourse is difficult

Emotions:

- Detecting and handling **emotions** properly greatly helps a mediator [3][4]
- Negative emotions: participants distracted, manipulatable and irrational [3]
- **Positive emotions:** participants understanding and tell wants and needs [3]
- Studies found at least **27 distinct emotions** exist [5]
- Emotion taxonomy of 27 emotions and "neutral" created by GoEmotions [6]

Subjective labels:

- Emotions are highly **subjective**, no "true labels" exist [7]
- Hard multi-label and soft labels are used [7]

Large Language Models (LLMs) prompting strategies:

- Zeroshot: no examples are given alongside the prompt
- Oneshot: one example is given alongside the prompt
- Fewshot: small number of examples is given to the LLM to train on
- Chain of thought: LLM is asked to reason about intermediate steps

2. Research question

"How can Large Language Models be used to detect subjective emotions in public discourse?"

Sub-questions:

- 1. How can a LLM be **modelled** to detect subjective emotions in public discourse?
- 2. What is the effect of **different prompting stragies** on the accuracy of subjective emotion detection in Dutch public discourse by a LLM?
- 3. What is the effect of **different types of labels** on the accuracy of subjective emotion detection in Dutch public discourse?

Fleiss Kappa score: 0.00365 Hard Majority Labels

Training method	Micro Fl score	Recall	Precision			
Zeroshot	0.385	0.420	0.355			
Oneshot	0.469	0.580	0.394			
Fewshot	0.486	0.537	0.444			
Zeroshot Chain of Thought	0.410	0.399	0.422			
Oneshot Chain of Thought	0.495	0.558	0.445			
Fewshot Chain of Thought	0.480	0.485	0.474			
Table 1: F1 score, recall and precision per prompting strategy						

Hard per LLM Run Labels

	Precision		Correct Labels		Incorrect Labels			
Training method	м	SD	м	SD	м	SD		
Zeroshot	0,660	0,0248	54,4	3,720	28,0	2,145		
Oneshot	0,720	0,0147	93,0	2,145	36,1	2,0		
Fewshot	0,768	0,0304	75,8	2,857	23,0	3,0		
Zeroshot Chain of Thought	0,709	0,0441	39,5	3,722	16,3	3,132		
Oneshot Chain of Thought	0,718	0,0221	68,5	2,377	27,0	2,864		
Fewshot Chain of Thought	0,764	0,0244	52,6	3,137	16,3	2,492		
Table 2: Precision, correct and incorrect labels per prompting strategy								

Soft Labels

ŤUDelft Contact info: b.c.p.zuurbier@student.tudelft.nl

4. Results

- Annotated labels: >=2 annotators picked it
- Predicted labels: >=2 LLM runs predicted it

- Annotated labels: >=l annotators picked it
- Predicted labels: per LLM run

Hard Per Annotator Labels

Graph 4: F1 score, recall and precision per annotato

5. Conclusion

- Limitations: • Little annotated data and translated from Dutch
- To model an LLM to detect emotions
- Choose existing model (Llama3)
- Choose prompting strategy (zeroshot, oneshot, fewshot, CoT)
- The effect of different prompting strategies
- Oneshot performed best in recall
- Fewshot performed best in precision
- CoT zeroshot had the largest improvement
- Fewshot is not enough to capture annotator perspective
- The effect of different labels
- Majority hard labels allow general predictions
- Per annotator hard labels show subjectivity per annotator
- Soft labels allow for better more precise subjective examples

LLMs can predict emotions, as much "right" as the average annotator

6. Future Work

- Run code on GoEmotions dataset
- Finetune the model
- Try different models (e.g. Mistral, Zephyr, etc.)
- Find appropriate evaluation measure for subjective tasks

7. References

[1] E. Schneiderhan and K. Schamus, "Reasons and inclusion: The foundation of deliberation", Sociological Theory, vol. 26, no. 1, pp. 1–24, 2008. doi: 10.1111/j.1467-9558.2008.00316.x.

[2] J. Forester, "Challenges of deliberation and participation", Les ateliers de l'éthique, vol. 1, no. 2, pp. 19-25, 2018. doi: https://doi.org/10.7202/1044678ar. [3] E. Kelly and N. Kaminskien'e, "Importance of emotional intelligence in negotiation and

mediation", International Comparative Jurisprudence, vol. 2, no. 1, pp. 55-60, 2016. doi: 10.1016/j.icj.2016.07.001. [4] K. Kim, N. Cundiff, and S. Choi, "The influence of emotional intelligence on negoti-

ation outcomes and the mediating effect of rapport: A structural equation modeling approach", Negotiation Journal, vol. 30, no. 1, pp. 49–68, 2014. doi: 10.1111/nejo. 12045

[5] A. S. Cowen and D. Keltner, "What the face displays: Mapping 28 emotions conveyed by naturalistic expression", The American psychologist, vol. 75, no. 3, pp. 349–364, 2020. doi: 10.1037/amp0000488

[6] D. Demszky, D. Movshovitz-Attias, J. Ko, A. Cowen, G. Nemade, and R. Sujith, "Goemotions: A dataset of fine-grained emotions", Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4040–4054, 2020. doi: 10.18653/v1/2020.acl-main.372.

[7] A. N. Uma, T. Fornaciari, D. Hovy, S. Paun, B. Plank, and M. Poesio, "Learning from disagreement: A survey", Journal of Artificial Intelligence Research, vol. 72, pp. 1385-1470, 2021. doi: https://doi.org/10.1613/jair.1.12752

