
Multi-armed bandit problems are problems
where a solver has to pick from a set of arms
(actions) repeatedly for a set number of times
without knowing the (distribution of the) rewards
of each arm [1].
Contexts are vectors x which are used in
contextual environments by an arm's reward
function, often in combination with some hidden
weights vector θ* [2].
Optimal Policy Regret is the difference between
an algorithms’ achieved reward and that of a
supposed optimal policy [1].

The following algorithms are being compared:
UCB [1]
EXP3 [3]
LinUCB [2]
CW-OFUL [4]
SW-UCB [5]

These algorithms are ran and compared in various
environments:

Stochastic with static reward distributions
Contextual with static θ*
Contextual with gradually changing θ*
Contextual with perturbed θ*

All three contextual environments have static noise
and context distributions.
The contexts and rewards are pre-generated to
make sure all algorithms are ran against the same
exact randomly generated data.
LinUCB, CW-OFUL and SW-UCB have been
excluded from the first test due to their
incompatibility with the environment

All contextual environments:
Stochastic algorithms nearly always gather far
more regret over time than contextual ones in a
contextual environment

Static contextual environments:
The performance of the contextual algorithms is
generally very similar in static contextual
environments.
Both linUCB and CW-OFUL seem to be very
consistent in their performance
SW-UCB sometimes performs far worse.

Non-static contextual environments:
linUCB and SW-UCB show high regret values in
certain, rare, configurations, but never in the same
environment. The cause is unclear.
CW-OFUL is consistently (one of) the algorithm(s)
with the lowest regret.

In static contextual environments, linUCB
performs the best, generally slightly better than
CW-OFUL and far better than the others. In non-
static contextual environments CW-OFUL tends
to perform better.

What is the difference in regret performance
between different bandit algorithms in
stochastic, static contextual and non-static
contextual environments.

[1] T. Lattimore and C. Szepesv ́ari, Bandit algorithms.
Cambridge University Press, 2020.
[2] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual
bandits with linear payoff functions,” in Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, JMLR Workshop and
Conference Proceedings, 2011, pp. 208–214
[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire, “The nonstochastic multiarmed bandit prob-
lem,” SIAM journal on computing, vol. 32, no. 1,
pp. 48–77, 2002
[4] J. He, D. Zhou, T. Zhang, and Q. Gu, “Nearly optimal
algorithms for linear contextual bandits with adversar-
ial corruptions,” Advances in neural information pro-
cessing systems, vol. 35, pp. 34 614–34 625, 2022
[5] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Learn-
ing to optimize under non-stationarity,” in The 22nd
International Conference on Artificial Intelligence and
Statistics, PMLR, 2019, pp. 1079–1087

1. Background 4b. Results4a. Data

5. Conclusion

Comparing bandit algorithms in static
and changing environments

Author: Cody Boon
Email: cody.m.boon@gmail.com
Supervisor: Julia Olkhovskaya

2. Research Question

3. Methodology

6. References

μ: [0.0, 0.25, ... 0.1], Σ: 0.1 μ: [0.0, 0.25, ... 0.1], Σ: 0.4

θ*: 0.4, μ: 0.1, Σ: 0.4

θ*: [0.0, 0.05, 0.11, ..., 1.0], μ: 0.1, Σ: 0.4 θ*: [0.0, 0.05, 0.11, ..., 1.0], μ: 0.1, Σ: [0.0, 0.25, ..., 1.0]

θ* : 0.4, θ* : -0.4, μ: 0.1, Σ: 0.1

1 2θ* : 0.4, θ* : 0.1, μ: 0.1, Σ: 0.4

1 2

θ* : 0.1, θ* : 0.4, μ: [0.0, 0.25, ..., 1.0], Σ: 0.41 2

https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A3

