
Multi-armed bandit problems are problems
where a solver has to pick from a set of arms
(actions) repeatedly for a set number of times
without knowing the (distribution of the) rewards
of each arm [1]. 
Contexts are vectors x which are used in
contextual environments by an arm's reward
function, often in combination with some hidden
weights vector θ* [2].
Optimal Policy Regret is the difference between
an algorithms’ achieved reward and that of a
supposed optimal policy [1].

The following algorithms are being compared:
UCB [1] 
EXP3 [3]
LinUCB [2]
CW-OFUL [4]
SW-UCB [5]

These algorithms are ran and compared in various
environments:

Stochastic with static reward distributions
Contextual with static θ* 
Contextual with gradually changing θ*
Contextual with perturbed θ*

All three contextual environments have static noise
and context distributions.
The contexts and rewards are pre-generated to
make sure all algorithms are ran against the same
exact randomly generated data.
LinUCB, CW-OFUL and SW-UCB have been
excluded from the first test due to their
incompatibility with the environment

All contextual environments:
Stochastic algorithms nearly always gather far
more regret over time than contextual ones in a
contextual environment

Static contextual environments:
The performance of the contextual algorithms is
generally very similar in static contextual
environments. 
Both linUCB and CW-OFUL seem to be very
consistent in their performance
SW-UCB sometimes performs far worse. 

Non-static contextual environments:
linUCB and SW-UCB show high regret values in
certain, rare, configurations, but never in the same
environment. The cause is unclear.
CW-OFUL is consistently (one of)  the algorithm(s)
with the lowest regret.

In static contextual environments, linUCB  
performs the best, generally slightly better than
CW-OFUL and far better than the others. In non-
static contextual environments CW-OFUL tends
to perform better.

What is the difference in regret performance
between different bandit algorithms in
stochastic, static contextual and non-static
contextual environments.
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