# THE SECRETS OF SUCCESSFUL VIRTUAL MEETINGS

EXPLORING THE DYNAMICS OF CONVERSATIONAL INVOLVEMENT IN GROUP SETTINGS: THE INFLUENCE OF INDIVIDUAL BACKGROUNDS

### AUTHOR

Ana Hobai, A.hobai@student.tudelft.nl

# **I INTRODUCTION**

# **BACKGROUND AND MOTIVATION**

To understand conversational dynamics in a group setting, it is a importance to explore the influence of individual backgrounds, gender, demographics, and virtual experience differences. For i research found girl students as more active in virtual group discu to boys [2]. A study on age stereotypes in the workplace empha consider age as an important factor when examining conversatic intergenerational groups [3]. Older adults were found to be less or increase their level of involvement in a discussion as compargeneration, which is more active [4]. However, this study will bui discoveries and use the MEMO Corpus to further explore the dy conversational involvement and their implications for group interation

# **RESEARCH QUESTIONS AND HYPOTHESES**

Does the conversational involvement of a group change based backgrounds of each member?

(a) To what extent does age impact conversational involvemer (null: Older adults have a negative impact on group involvement)

(b) To what extent does gender influence the overall conversa group? (null: Women are more involved in group conversations of

(c) Do demographics and virtual meetings experience have an involvement in a virtual meeting? (null: Demographics and Online the overall engagement of a group)

# OBJECTIVE

Overall, this paper seeks to contribute to a better understanding conversational involvement in group settings of virtual interaction dynamics can be influenced by personal backgrounds. The findi could have implications in various fields, such as communication organizational behaviour.

#### References:

[1] H. E. Krugman, "The measurement of advertising involvement," The Public Opinion Quarterly, vol. 30, no. 4, pp. 583–596, Available: http://www.jstor.org/stable/2746964(visited on 05/30/2023). [2] M.-J. Tsai, J.-C. Liang, H.-T. Hou, and C.-C. Tsai, "Males are not as active as females in online discussion: Gender differen strategies," Australasian Journal of Educational Technology, vol. 2015, pp. 263–277, May 2015. DOI: [3] R. Posthuma and M. Campion, "Age stereotypes in the workplace: Common stereotypes, moderators, and future resear MANAGE, vol. 35, pp. 158–188, Feb. 2009. DOI: 10.1177/0149206308318617. [4] A. S. Brown, E. M. Jones, and T. L. Davis, "Age differences in conversational source monitoring.," Psychology and [5] D. Gatica-Perez, I. McCowan, D. Zhang, and S. Bengio. Detecting group interest-level in meetings. In ICASSP [6] C. L. Sidner, C. Lee, C. D. Kidd, N. Lesh, and C. Rich, "Explorations in engagement for humans and robots," Artificial Intellig [7] E. Jackson and R. Agrawal, Performance evaluation of different feature encoding schemes on cyberse [8] G. R. Franke, "Multicollinearity," Wiley international encyclopedia of marketing, 20

[9] S. Hennekam and Y. Shymko, "Coping with the covid-19 crisis: Force majeure and gender performativity," Gender, Work & Org

|                                                                                                                                                                                                        | <b>SUPERV</b><br>Catholijn Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of great<br>such as age,<br>instance, prior<br>cussions compared<br>hasizes the need to<br>fonal involvement in<br>s likely to maintain<br>red to the younger<br>uild on these                         | <ul> <li>II METHODOLOGY</li> <li>Definition of group involvement:</li> <li>The "perceived degree of interest or involvement of t</li> <li>[5]</li> <li>Definition of conversational involvement:</li> <li>The "process by which individuals in an interaction state perceived connection to one another".</li> <li>[6]</li> <li>Annotations: <ol> <li>Randomly split the video collection into 4, an over includes a 10% overlap between each two annota</li> <li>Calculated the inter-annotator agreement using IC</li> </ol> </li> </ul> |
| ynamics of<br>ractions.                                                                                                                                                                                | highest = 0.75 → moderate-good reliability.<br>3. Combined the four sets by taking the mean of the<br>→ our target variable.                                                                                                                                                                                                                                                                                                                                                                                                               |
| on the individual<br>ent in a group setting?                                                                                                                                                           | Data Analysis and Modelling:<br>1. Encoded the categorical values using the One-Ho<br>2. Multicollinearity checks (heatmaps and Variance<br>Figure 2)                                                                                                                                                                                                                                                                                                                                                                                      |
| ational engagement of a<br>compared to men.)<br>by effect on group<br>e backgrounds impact                                                                                                             | <ol> <li>The k-fold cross-validation method is used for test (LR), Decision Tree (DT), Random Forest (RF) and I (GLMM).</li> <li>The Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Median A (MAPE), Mean Absolute Error (MAE), and Median A metrics are used to detect the best model performance.</li> </ol>                                                                                                                                                                                                             |
| ng of the dynamics of<br>ons, and how these<br>dings of this research<br>on, psychology, and                                                                                                           | X - fixed<br>Z - rando<br>DATA - MEMO Corpus (collection of group discu<br>19 - includes a set of questionnaires and videos<br>on (non-)verbal signals, based on human comr<br>collaboration)<br>β x (independent vars.)                                                                                                                                                                                                                                                                                                                   |
| 1966, ISSN: 0033362X, 15375331. [Online].<br>nces in face-to-face and online discussion<br>10.14742/ajet.1557.<br>ch directions†," Journal of Management - J<br>d Aging, vol. 10, no. 1, p. 111, 1995. | inter- & intra- personal<br>characteristics (of<br>participants)<br>estimate/predict ord<br>• DecisionTree<br>• Random Forest                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2005, pages 489–492, 2005.<br>gence, vol. 166, no. 1-2, pp. 140–164, 2005.<br>ecurity logs. IEEE, 2019.<br>D10.<br>rganization, vol. 27, no. 5, pp. 788–803, 2020.                                     | <ul> <li>Linear Negression</li> <li>Linear Mixed Effects</li> <li>g(E[y u]) = βX + uZ</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# ERVISORS

lijn Jonker, Masha Tsfasman

t of the majority of the group".

start, maintain and end their

overall of 17 hours  $\rightarrow$ otators

ng ICC3k  $\rightarrow$  lowest = 0.52,

f the overlapped annotations

e-Hot Encoder [7] nce Inflation Factor (VIF) [8],

r testing the Linear Regression and Mixed Effects Models

Absolute Percentage Error ian Absolute Error (MedAE) erformance (Table 1, Figure 4). S: GLMM formula fixed effects (predictors), random effects (groups) iscussions on Coviddeos containing info communication and

Group involvement ordered categorical

1. Very low

- 2.Low 3. Moderate
- 4. High
- 5. Very high



with the highest value of 3.35 registered for Group 2.

# **III RESULTS/FINDINGS**

(a) Younger people improve overall group in

(b) Male-preponderant groups score higher

(c) Groups with participants from the studen have had prior experience with online discus increase in group engagement compared to (d) Age, gender, demographics and virtual e enough information to the models used to r group involvement predictions.

y\_test = Actual values y\_predicted = Predicted values RMSE = sqrt(mean((y\_test - y\_predicted)^2)) MAPE = mean((y\_test - y\_predicted) / y\_test) MAE = mean(|y\_test - y\_predicted|) MedAE = median(|y\_test - y\_predicted|)

# **IV CONCLUSIONS**

- Age differences affect group involvement were found to be more engaged, which ali concerning age effects.
- 2. Males showed to be more active in virtual contradictory to prior findings. (women wer Covid-19 - stress, anxiety and overwhelmir more engaged in group discussions compa conversations [1].
- 3. Based on these personal characteristics, better than GLMM and LR, and is comparal

# **V LIMITATIONS**

The Corpus discussions were based on

Figure 1: Involvement of each group based on gender, Figure 2: Heatmap of predictors. Figure 3: GLMM results (beta coefficient, standard error and p-value (vr\_Previous = virtual\_experience\_Previous)

|                                                                                                                      |                           | Variable        |                | Coef.      | Std. Err. | P> z         |
|----------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------|------------|-----------|--------------|
| ivolvement. (Figure 3)<br>involvement. (Figure 1)<br>it demographic who<br>ssions show an<br>o the others (Table 2). |                           | age             |                | 0.690      | 0.050     | 0.000        |
|                                                                                                                      |                           | Gender          |                | 0.085      | 0.075     | 0.260        |
|                                                                                                                      |                           | middle          |                | 0.285      | 0.153     | 0.062        |
|                                                                                                                      |                           | parent          |                | 0.276      | 0.094     | 0.003        |
|                                                                                                                      |                           | student         |                | 0.707      | 0.103     | 0.000        |
|                                                                                                                      |                           | virtual_expe    | rience_Previo  | us 0.135   | 0.106     | 0.201        |
| experien                                                                                                             | ice provide               | Group Var       |                | 0.033      | 0.167     |              |
| esult in                                                                                                             | accurate                  |                 | Table 2: Gl    | IVIIVI res | Ults      |              |
|                                                                                                                      | Madal                     | DMCD            | MADE           | MAT        | Mad       | A TC         |
|                                                                                                                      | CLAM                      | RIVISE<br>0.224 | MAPE<br>0.002  | MAE 0.296  | 0.28      | AE           |
|                                                                                                                      | GLMM<br>Lincer Perroceion | 0.524           | 0.095          | 0.280      | 0.28      | )<br>1       |
|                                                                                                                      | Decision Tree             | 0.200           | 0.0000         | 0.165      | 0.10      | 1            |
| t <b> ) * 1</b> 00                                                                                                   | Random Forest             | 0.010           | 0.002          | 0.009      | 0.00      | 2            |
|                                                                                                                      | Random Forest             | 0.062           | 0.022          | 0.000      | 0.000     | 0            |
|                                                                                                                      | Table 1: Perforr          | mance metr      | rics (k-fold c | ross-va    | lidation) | •            |
|                                                                                                                      |                           |                 |                |            |           |              |
|                                                                                                                      |                           |                 |                |            |           |              |
| t in a vir                                                                                                           | tual cotting stude        | nto             | RF             |            |           |              |
|                                                                                                                      | lual setting, stude       |                 | 0.082          |            |           |              |
| ligns wit                                                                                                            | in the null hypothe       | SIS<br>0        | 016            |            |           |              |
|                                                                                                                      |                           | U               | .010           |            |           |              |
| l conver                                                                                                             | rsations than wom         | ien,            |                |            |           |              |
| ere emo                                                                                                              | tionally impacted         | by              |                |            |           | GLMM         |
| na feelii                                                                                                            | nas [9]) Also mei         | n are           |                |            |           | 0.324        |
| ng iccu                                                                                                              | womon in rool life        |                 |                |            |           |              |
| bared to                                                                                                             | women in real-life        |                 |                |            |           | ,<br>,       |
|                                                                                                                      |                           | 0.20            |                |            |           |              |
| Randor                                                                                                               | n Forest performs         | >               |                |            |           |              |
| able to t                                                                                                            | he DT model.              |                 |                | roo foi -  |           |              |
|                                                                                                                      |                           | rigure 4        | . KIVIJE SCOI  | es ior a   | ll mode   | <i>'</i> IS. |
|                                                                                                                      |                           |                 |                |            |           |              |
|                                                                                                                      | • • • •                   | • • ~           |                |            |           |              |
| n the Co                                                                                                             | ovid-19 topic, com        | prising of      | UK reside      | ents, na   | ative in  |              |
|                                                                                                                      | foront ocrosso mos        |                 |                |            |           |              |

English. Conducting the same research on a different corpus may lead to a different outcome.