Impact of state visitation mismatch methods on the performance of onpolicy reinforcement learning methods Hongwoo Cho, Stephan Bongers, Frans Oliehoek

1. Background

Reinforcement learning (RL) has shown success in different domains, such as autonomous driving. However, they rely on large amounts of data generated by simulators, which may not be feasible in real-world applications

Instead, we often have access to offline data collected from unknown behavior policies, posing significant challenges for policy evaluation and optimization.

Behavior-agnostic data: In many real-world scenarios, the data available for training RL models comes from unknown behavior policies.

By using off-policy evaluation methods such as the Distribution Correction Estimation (DICE) to initialize Q-values, we can provide a more accurate starting point for on-policy RL methods like Q-learning [1]. This approach aims to enhance convergence speed, effectively bridging the gap between off-policy and onpolicy paradigms, and making the most of available offline data to inform online learning processes.

Research Question: How does state visitation mismatch methods impact the performance of on-policy RL methods?

2. Methodology

To answer the RQ, we used the following steps:

- > Dataset Generation: Created two types of datas are the behavior policy dataset and target policy data
- > Running the DICE Estimator: Used to correct d mismatches by adjusting state-action visitation dis Q-values are extracted from the DICE estimator.
- > Q-Learning: With two sets of Q-values: DICE-initia zero-initialized Q values, we measure the average r step to assess performance and convergence speed

h.cho-1@student.tudelft.nl, s.r.bongers@tudelft.nl, f.a.oliehoek@tudelft.nl Delft University of Technology

3. Experiment

Frozenlake environment was used as shown in Figure 1.

- > Navigate the agent from the start (top-left) to the goal (bottom-right) of a grid.
- \succ Consists of two types of tiles: F = Frozen lake (safe to move), H: Hole (falling ends the episode)
- > Movement: The ice is slippery, so the agent may not move in the intended direction
- \succ Rewards: +1 for reaching the goal and 0 for falling into a hole or moving to a safe tile.

Figure 1: FrozenLake Environment, from [2]

4, Results and Discussion

Extracted Q-Values from the DICE Estimator are shown in Table 1:

	Table 1: Q-Values from DICE Estimator				
sets, which	State	Move Left	Move Down	Move Right	Move Up
	State 1	0.50368656	0.28417100	0.24744200	0.30284700
lasel.	State 2	0.00666858	0.00369054	0.00309231	0.00149879
listribution	State 3	0.02507504	0.00371495	0.00309155	0.01011084
	State 4	0.05221552	0.01277991	0.00067256	0.00430612
stributions.	State 5	0.26031873	0.00403238	0.00468556	0.00260281
	State 6	0.00233800	0.00251356	0.00273770	0.00179974
	State 7	0.02266099	0.00031998	0.00077225	0.00000000
alized and	State 8	0.00000000	0.00000000	0.00000000	0.01678710
	State 9	0.00223199	0.00417178	0.00007266	0.13045901
reward per	State 10	0.01144835	0.11829945	0.00535556	0.00362227
4	State 11	0.00075249	0.01784247	0.00250205	0.00025089
	State 12	0.01815625	0.00211173	0.00307075	0.00129442
	State 13	0.00279297	0.00271804	0.00299118	0.00082534
	State 14	0.00014303	0.00039642	0.02397827	0.00021320
	State 15	0.00124678	0.01325846	0.00001431	0.00456260
	State 16	0.00000000	0.00000000	0.00000000	0.00000000

the DICE Q-values and zero Q-values, Q-Learning With algorithm was ran to compare the average rewards over time step, shown in Figure 2.

Figure 2: Average Rewards over time for Q-Learning on FrozenLake

5. Conclusions and Future Work

Main Contributions

- DICE Q-values performance.

Future Work

- the Q-values generated by the DICE.

evaluation via the regularized lagrangian, 2020.

> Average reward higher for DICE Q-Values as DICE Q-values provide more accurate initial estimate of the expected rewards, which reduces the amount of exploration

> Investigated the impact of state visitation mismatch methods on the performance of on-policy RL methods > Our study demonstrated that initializing Q-learning with enhances convergence and speed

> Additional experiments on larger and more complex environments, which offer higher complexity and variability. > Explore different target policies to assess how they affect

6. References

[1] Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, and Dale Schuurmans. Off-policy

[2] Bethany D. Pena and Daniel T. Banuti. Reinforcement learning for pathfinding with restricted observation space in variable complexity environments, 2021