
Martin Petrov

M.A.Petrov@student.tudelft.nl

How do different exploration strategies perform for detecting concurrency bugs in PBFT?

Burcu Kulahcioglu Ozkan

Ege Berkay Gulcan

 Background
 Practical byzantine Fault Tolerance (PBFT
 Seminal consensus algorith
 Tolerates f faulty nodes of total 3f+1 node
 Consists of three phases - Pre-Prepare, Prepare 

and Commit

 Controlled Concurrency Testing - allows for control 
over over the order in which threads are execute

 Exploration strategies
 Random Walk - randomly chooses next action to be 

performed. Used as a baselin
 PCT - randomly assigns priorities to task
 Delay-Bounding - applies delays to some task
 Q-Learning - utilizes reinforcement learning, 

maximizes the unique fingerprints in a test run

 Research questions:

 Which exploration algorithm performs the best for 
detecting concurrency bugs?

 Which exploration algorithm performs the fastest 
detection of a concurrency bug

 How effective is the random scheduler in 
comparison to the other techniques

 Does the number of iterations correlate to the 
amount of bugs found when using QL

 How do fair exploration techniques compare to 
unfair ones?

 Methodology

 Framework selectio
 Coyote - allows for reproducing test executions and provides the 

exploration strategie

 PBFT Implementatio
 Implemented via Coyote’s actor mode

 Seeding of bug
 First benchmark: the bug is in the prepare phase of the algorithm. 

Our implementation keeps track of the commit-local predicate for 
each request via a dictionary. When a replica receives a pre-
prepare request, it adds the digest of the replica as a key and sets 
the value to false. When a replica receives a commit message, it 
checks whether the predicate is true in the dictionary. The 
Heisenbug occurs in the rare cases in which a node receives a 
commit message by another replica before processing a pre-
prepare message for its digest. In these cases, the dictionary 
does not contain the key and throws an exception when trying to 
fetch the value of a non-existent key from it.

 Second benchmark: The second bug is related to a change in the 
number of nodes needed for reaching a majority for consensus. It 
was arbitrarily decided to seed the bug in the reply phase. We 
change the number needed for majority from f+1 to f. This allows 
for concurrency bugs, which occur only when the f faulty nodes 
are the first group of nodes with the same signatures to send 
their replies to the client.



 Results and Analysis

 Conclusion and future improvements
We have compared 4 different exploration strategies. F-PCT is the best 
performing for our bugs. Future improvements
 Optimizing parameters for bounded strategie
 Seeding bugs involving a view chang
 Further research on fair and unfair strategies for their performance and 

possible use cases 

From the performed experiments, it can be concluded that PCT and F-
PCT are performing the best from all strategies for our benchmarks, 
both in terms of finding bugs and the iterations needed to detect a bug. 



The results indicate that the QL exploration algorithm, which aims 
to maximize unique fingerprints in a program, shows a dependence 
on the number of iterations. Increasing the coverage in a test run 
leads to finding more bugs per iteration in some cases, but 
conflicting results were obtained for different benchmarks.



In conclusion, based on the experiments conducted, it can be 
recommended to build a portfolio of exploration strategies instead 
of relying on a single strategy when testing for concurrency bugs in 
PBFT. PCT and F-PCT strategies showed promising performance, 
but further research and experimentation are needed to validate 
their effectiveness and explore other potential strategies.


