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UCB Algorithms: 
select the arm with the largest 
overestimate of the reward, using 
uncertainty.

Overestimate computation? 
Use the posterior mean and variance of the 
Bayesian predictive distribution using GP 
regression [2].

Computational Inefficiency: instead of 
using all past observations, select a subset 
of “inducing points” (the BKB bandit 
algorithm) [3].

SI-BKB Upper Regret Bounds 
are sub-exponential with respect to 
the ambient dimension. Bounds are 
comparable to SI-BO.

Sub-exponential Bounds:
The BKB regret bound is on the true 
subspace and, thus, does not 
depend on the ambient dimension.

Misalignment Costs
are dominated by the regret bounds 
of the BKB on the true reward 
function on the horizon:                                           
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1. The SI-BKB algorithm achieves comparable performance to SI-BO both 
theoretically and empirically.
2. SI-BKB and SI-BO perform well even under high sparsity constraints 
across all kernels.

Future Improvements:
- extending the subspace learning framework to other non-GP bandit 
algorithms
- performing subspace learning and Bayesian optimization simultaneously.

References
[1] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-Dimensional Gaussian Process Bandits. In Advances in Neural Information 
Processing Systems, volume 26. Curran Associates, Inc., 2013.
[2] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-theoretic regret bounds for gaussian 
process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5):3250–3265, 2012.
[3] Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher K. I. Williams. Approximation Meth ods for Gaussian Process 
Regression. In Leon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors, Large-Scale Kernel Machines, pages 203–224. 
The MIT Press, August 2007.

Synthetic Data Generation:
Every round, contexts are generated for each arm from a 
Gaussian distribution: the mean is uniformly sampled from 
the context space before the simulation. Additionally, before 
the simulation, every arm is queried 10,000 to assign the 
arm with the best cumulative reward as the best constant-
action algorithm for the regret computation.

Experimental Conditions:
- Bandit Environments: linear, Branin (non-linear)
- Isotropic Kernels: RBF, Matern, Rational Quadratic

SI-BKB Behaves Similarly to SI-BO:
The erratic plateau of the subspace identification phase and 
the decay of the Bayesian optimization phase are clearly 
identifiable. The average regret of the SI-BKB lies within 1σ of 
the SI-BO algorithm. The consistency in behavior persists 
across  bandit environments.

Violation of No-Regret:
None of the simulated conditions exhibited a regret trend 
that approach zero regret.

Regret Does Not Deteriorate under High Sparsity:
In some cases, the regret in the final 100 rounds improves 
under high sparsity. Kernels that are less suitable for the 
estimation of infinitely smooth functions (Matern, RQ) show 
substantial improvement.

 

The Contextual Bandit Problem:
A problem in sequential learning, wherein a bandit algorithm must select an arm, or 
action, to obtain  a reward with limited initial knowledge of its structure. In contextual 
bandits, the bandit algorithm is also presented with contexts for every arm that may 
influence the reward. The performance of bandit algorithms is measured through 
(cumulative) regret: the difference between the expected reward of the best 
constant-action algorithm and the selected bandit algorithm.

Sparsity and the SI-BO Algorithm:
In practical domains, the context vectors often lie in a high-dimensional ambient 
space, while the reward function often lies in a low-dimensional space. The SI-BO 
bandit algorithm [1] capitalizes on this distinction by employing a two-phase 
framework: first identifying the underlying subspace first and then applying a 
Bayesian bandit algorithm to the subspace.

Research Sub-Questions:
- How can the framework of SI-BO be extended to create a novel algorithm SI-BKB?
- Does SI-BKB offer comparable empirical performance to SI-BO?
- What trade-offs emerge between the initial subspace identification cost and the 
long-term optimization benefits?
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