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the Lorentz Model

The Lorentz Hyperboloid model improves the quality of hyperbolic t-
SNE, making it a viable alternative for visualizing high-dimensional 
datasets.
Our method also maintains the acceleration factor from using an 
acceleration data-structure.

intersect all the segments of the 
cube with the hyperboloid

compute all pairwise distances

choose the largest one as the maximum 
width of the node
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Experiments 
& results

1. Embedding Quality vs Other 
Implementations:

2. Embedding Quality per Learning Rate:

3. Absolute Run-time Comparison:

4. Embedding Quality and 
Efficency per         value:

Lorentz Ht-SNE performs better than both 
Quadtree Poincare [2] and exact versions (see 
prec.-vs-rec. graphs on bottom).

Tested an interval from             to             logarithmically. 
Lorentz Ht-SNE performs best with values between      
          and         . With greater values, the algorithm sends 
the points over the float max value.

Our version maintains the speedup from 
to                          . Compared to the Poincare 
version, it has a similar performance, even 
surpassing it slightly.

Increasing theta value reduces run-
time significantly, while maintaining 
a similar quality.

[4] James W. Anderson. Hyperbolic geometry. 1999.

MNIST

Visualizing high-dimensional data is crucial for 
unlocking insights into complex phenomena. This 
would require embedding onto lower-dimensional 
planes to facilitate human interpretation and analysis. 

Dimensionality reduction techniques play an essential role in this 
process, preserving important metrics to reveal underlying 
structures of the data. 

In order to preserve data hierarchy information, hyperbolic models can be 
used to represent the embedding space. This research explores a method to 
accelerate hyperbolic t-SNE using the Lorentz Hyperboloid model to enhance 
efficiency and quality.

Can the Lorentz Hyperboloid model be used 
as the embedding space, in conjunction with 
an octree acceleration data-structure, to 
improve the quality of the embeddings of 
Ht-SNE, while maintaining a similar run-
time efficiency with the accelerated 
version?.

Hyperbolic space is the unique, 
complete, simply connected 
Riemannian manifold with constant 
negative sectional curvature. There 
exist multiple equivalent models for 
hyperbolic space, such as the Poincare 
ball and half-plane model, the Klein 
model and the Hyperboloid (or 
Lorentz) model.
 The Lorentz model of 2-dimensional 
hyperbolic space is defined as the 
Riemannian manifold
where

,

is the upper sheet of a two-sheeted 
2-dimensional hyperboloid [4].

t-SNE is a visualization technique for high-
dimensional data. It aims to minimize the 
divergence between two distributions: a 
distribution that measures pairwise similarities 
of the input objects and a distribution that 
measures pairwise similarities of the 
corresponding low-dimensional points in the 
embedding space [3].

Introduction

Hyperboloid t‐sne

Research Question

The data-structure used for acceleration is a 
modified version of an octree (see bottom of poster). 

 - standard octree splitting criterion: center of cube

       - midpoint computation 
(Lorentz centroid [1]):

This data-structure is applied on the Lorentz coordinates of 
each embedded data point. The octree has the following:

 - maximum width computation:
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