Evaluating the Performance of the Model Selection with Average ECE and Naive Calibration in Out-of-Domain Generalization Problems for Binary Classifiers

1. Introduction

- Out-of-domain (OOD) generalization **problem:** learn a model from one or more domain(s) that can be used in an unknown test domain.
- Solution: Multi-domain calibration
- Naive calibration and model selection with average expected calibration error (ECE) across training domains are two of the approaches to optimize models, so they achieve this type of calibration.

2. Motivation

Both are **easy to apply** but **limited in their** power to learn a model that is truly wellcalibrated across multiple domains [1]

3. Research question

- How well does naive calibration and model selection with average ECE perform in the out-of-domain (OOD) generalization problem for binary classifiers?
- RQ1: Does naive calibration improve average prediction performance, as measured in the accuracy or AUROC¹, across unseen domains?
- RQ2: Does OOD Accuracy² improve as the number of training domains grows?
- RQ3: Is model selection with average ECE a ٠ reasonable model selection strategy in the OOD generalization problem?

Anxian Liu (A.Liu-2@student.tudelft.nl) Supervised by Rickard Karlsson, Stephan Bongers Responsible Professor: Jesse Krijthe

4. Methods

• Experiment A:

- 200 datasets
- Train and calibrate seven binary classifiers
- Calculate the difference in OOD accuracy/OOD • AUROC³ before and after naive calibration
- Bootstrapping hypothesis test ٠

Experiment B:

- 10 datasets
- Train and calibrate seven binary classifiers
- A positive linear relationship between the number of training domains and OOD accuracy?

• Experiment C:

- 3 datasets
- Train 400 neural networks on each dataset
- A linear relationship between OOD accuracy and average ECE? And how strong is it?

6. Results

	Avg Diff OOD ACC	P-value	Confidence interval of the mean			
Logistic Regression	0.032	0.0	(0.024, 0.041)			
Linear SVM	0.021	0.0	(0.014, 0.031)			
Decision Tree	0.009	0.056	(-0.001, 0.021)			
Random Forest	0.010	0.086	(-0.004, 0.023)			
Neural Network	0.015	0.0	(0.011, 0.019)			
AdaBoost	0.005	0.0008	(0.0033, 0.010)			
Naive Bayes	0.001	0.371	(-0.004, 0.005)			
Table 1: Results of Experiment A						

	PCC between the	PCC between the				
	number of training	number of training	the Partial Correlation			
	domains and	data and				
	OOD ACC	OOD ACC				
Logistic Regression	0.85	-0.94	0.81			
Linear SVM	0.88	0.49	0.85			
Decision Tree	0.92	0.17	0.92			
Random Forest	0.90	0.31	0.89			
Neural Network	0.86	-0.88	0.81			
AdaBoost	0.37	0.04	0.37			
Naive Bayes	0.90	0.21	0.90			
Table 2: Results of Experiment B						

	PCC between	PCC between			
	ECE	validation accuracy	the Partial Correlation		
	and OOD accuracy	and OOD accuracy			
Dataset A	-0.84	0.37	-0.82		
Dataset B	-0.64	0.37	-0.56		
Dataset C	-0.70	0.31	-0.71		

Table 3: Results of Experiment C

•

1: the area under the receiver operating characteristic 2: average accuracy across the unseen domains 3: average area under the ROC Curve across unseen domains

5. Data generation

Figure 1: The causal diagram of the synthetic data [1]

• There are similar results for OOD AUROC

• The models that have a statistically significant improvement in OOD accuracy are in **bold**

• A positive linear correlation

between the number of training domains and OOD accuracy

PCC: Pearson correlation coefficient

• A relatively strong negative linear correlation between average ECE and OOD accuracy

7. Conclusion

- Naive calibration can improve OOD accuracy and OOD AUROC of some binary classifiers. At least, It does not make the model worse.
- For most classifiers, training the model on data from more training domains leads to higher OOD accuracy.
- Average ECE is a **reasonable** metric for selecting a model, and it is **better** than validation accuracy in the OOD generalization problem.

8. Limitations

- All experiments are based on synthetic data.
- Isotonic regression is the only method to implement naive calibration.
- PCC and the partial correlation only measure linear relationships.

9. Future work

- Use real-world datasets.
- Try another method to implement naive calibration, such as Bayesian Binning into Quantiles [2].
- Conduct Experiments B and C on more datasets and analyze results with statistical tools.

10. References

[1] Wald, Y., Feder, A., Greenfeld, D., & Shalit, U. (2022). On Calibration and Out-of-domain Generalization. ArXiv:2102.10395 [Cs]. http://arxiv.org/abs/2102.10395

[2] Naeini, M. P., Cooper, G. F., & Hauskrecht, M. (n.d.). Obtaining Well Calibrated Probabilities Using Bayesian Binning. 7.