Sorin-Catalin Enachioiu AUTHOR : (senachioiu@tudelft.nl)

SUPERVISORS: Kubilay Atasu, Cagri Bilgi

GRAPH LEARNING ON TABULAR DATA CASCADE AND INTERLEAVED MODELS

01. Introduction

This project explores how Graph Neural Networks (GNNs) that capture local information within a graph can be combined with Transformers, that capture global information within a graph in order to **perform fraud** detection on a series of synthetically generated transactions [1] that are stored in a tabular format. This is possible because tabular data has an implicit graph structure.

RESEARCH QUESTION

How well do **Cascade** and **Interleaved** model architectures perform on the IBM **Anti Money Laundering** (AML) **datasets** compared to a **PNA** baseline ?

02. Background

Message Passing Neural Networks (MPNN)

Framework for neural networks on graph data, in which node embeddings are updated in three steps.

Transformer Encoder

A model that outputs new embeddings that have values based on a weighted combination of the initial embeddings with other embeddings that are similar in the context.

Learnable Positional Encodings model.

MEGA

Multigraph adaptation for MP with two-stage aggregation.

PEARL

Raw Graph

04. Experimental Setup and Results

Datasets

- Small_HI high illicit transactions count
- Small_LI low illicit transactions count
- 60-20-20 temporal split train-test-validation

mplementation

- Used Pytorch & Pytorch Geometric for models
- mean ± standard deviation for each experiment, computed over five runs, and initialized with random seeds, run for 80 epochs.
- Baselines
- PNA, PNA + PEARL, PNA + MEGA, PNA + PEARL + MEGA.

Evaluation

- F1 score to assess performance good for highly imbalanced datasets
- We report the F1 test score corresponding to the highest F1 score in validation

PNA Ablation study

- The addition of **PEARL** to PNA improves mostly the LI results with almost 4%.
- The addition of MEGA brings massive improvements on both HI and LI.
- The combination of MEGA and PEARL sees the biggest improvements, showing they bring complementary benefits.

Cascade & Interleaved vs PNA

- Cascade and Interleaved improve the performance of PNA on most of the configurations.
- The addition of PEARL mostly improves the performance of all the models. Yet, it leads to a decreases in results for Cascade + PEARL on HI.
- The addition of MEGA has given significar improvements for all the models.
- The combination of MEGA and PEARL has made PNA and Cascade achieve the best results. Yet, Interleaved achieved worse results than with just MEGA.

	Models	Small-HI	Small-LI	#params
	PNA	63.48 ± 3.56	21.67 ± 1.96	32,197
ne s	+ PEARL	65.57 ± 3.97	25.35 ± 2.88	33,547
	+ MEGA	72.58 ± 1.35	43.71 ± 1.14	41,837
	+ MEGA + PEARL	$\underline{74.45\pm0.89}$	45.00 ± 1.02	43,187
	Cascade	64.99 ± 2.31	25.42 ± 0.37	37,257
	+ PEARL	61.84 ± 5.55	27.81 ± 3.42	38,607
	+ MEGA	73.25 ± 0.66	45.50 ± 0.98	46,897
nt	+ MEGA + PEARL	73.64 ± 1.82	46.07 ± 0.93	48,247
6	Interleaved	68.40 ± 2.86	31.30 ± 3.17	64,937
	+ PEARL	67.63 ± 1.15	34.86 ± 2.17	66,287
	+ MEGA	75.31 ± 0.45	$\underline{46.05\pm0.88}$	84,217
	+ MEGA + PEARL	73.28 ± 2.18	44.15 ± 0.89	85,567

Transformer

GNN

Cascade

MPNN

GNN

Transformer

GNN

_ _ _ _ _ _ .

Interleaved

Transformer

03. Cascade & Interleaved

Cascade:

- GNN: Takes a graph as input and makes node embeddings that encode local neighborhood information
- Transformer: Uses these embeddings to look for global similarities.
- These similarities are then used to predict which transactions are illicit

Interleaved:

• Cascade : Use the cascade model to get embeddings based on similarities of local neighborhoods

Predict which transactions are illicit

virtual edg

05. Discussion

- **PEARL** is able to improve model performance at low cost, both memory and space.
- PNA improves with both the addition of PEARL and **MEGA** and their combination as well.
- Cascade and Interleaved improve consistently the performance of PNA.

06. Conclusion and Future Work

- This research shows that local MP performance can be enhanced by combining it with global MP.
- Learnable positional encodings, PEARL, show promise in enhancing the results of the models on the AML datasets.

Future work can focus on:

- Use FraudGT instead of just a Transformer Encoder.
- integrate PEARL into other models
- integrate FraudGT model into Cascade and Interleaved