1. Introduction

Rank similarity coefficients can measure agreement between different rankings of the same items. Kendall's τ uses concordance:

$$R = \begin{bmatrix} a, b, c, [d, e] \end{bmatrix}$$

$$B = \begin{bmatrix} b, a, [e, d, c] \end{bmatrix}$$

$$a, [e, d, c]$$

$$a, b) is discordant,$$

$$(a,c),(a,d),(a,e),(b,c),(b,d)$$

$$(a,c),(a,d),(a,e),(b,c),(a,d)$$

$$(a,c),(a,d),(a,e),(b,c),(a,d)$$

$$(a,c),(a,d),(a,e),(a,d),(a,e),(a,d)$$

$$(a,c),(a,d),(a,e),(a,d),(a,e),(a,d)$$

$$(a,c),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a,e),(a,d),(a$$

Extensions for τ : if some pairs matter more than others, a *weight function* can be used:

$$w(i,j) = \frac{1}{max(i,j)}$$
 item pairs later in the ranking contribute less

$$\tau_w(R,B) = \frac{\sum c(i,j)w(i,j)}{\{weighted \ maximum\}} \approx 0.485$$

Supervisor: Julián Urbano Extensions for τ : *tied items*. This can happen

Andreas Tsatsanis

atsatsanis@tudelft.nl

when there is *uncertainty* in the ranking. Variants of τ : τ^{a} , τ^{b} allow for computing τ with ties. But they do not reflect uncertainty:

$\tau^a(R,B) = 0.5$	$\tau(\langle a, b, c, d, e \rangle, \langle b, a, c, d, e \rangle) = 0.8$
$\tau^b(R,B) \approx 0.63$	$\tau(\langle a, b, c, d, e \rangle, \langle b, a, e, d, c \rangle) = 0.2$

Each way of breaking ties gives a different τ

It would be useful to *quantify* how much variability there is in the correlation.

RBO bounds: RBO^{high} RBO^{low}, - can show *impact* of ties on correlation value

2. Research Question

Can we efficiently compute τ^{\min}/τ^{\max} ? How do τ^{\min}/τ^{\max} compare to τ^{a}/τ^{b} ?

by τ^{\min} , τ^{\max} .

the ties.

(Shown above) Synthetic data: uniform τ , uniform tie distribution, lengths 3-150, 250k samples

4. Proposed Algorithm

1. Take edges from $E_R \cap E_B$

2. Check: can they be in the final ranking?

3. If allowed, greedily add to solution.

- Optimal for unweighted case (proof: exchange argument)
- Minimisation: invert sorting for E_p
- Weighted case: sort *E* by *descending weight*
- τ_{AP} : optimal,
- $\tau_{\rm h}$: approximation

3. Method

How can we compute τ^{\min}/τ^{\max} ?

- \rightarrow Trying all permutations: O(n!²)
- \rightarrow Maximising $\sum_{\{i,j\}} c_{R,B}(i,j)w(i,j)$ is hard^(Knapsack)
- \rightarrow RBO: construct rankings to maximise *overlap*
- ! Concordance is not the same as overlap

Overlap depends on depth

Concordance depends only on relative order between item pairs

Concordance: sum of pairs with same relative order in both rankings

Idea:

Like RBO, construct extremal rankings.

Requirements:

- Pick an order for the items with maximum concordance.

- Valid order must be transitive

Same edge: concordant Valid solution: acyclic Concordance = $|E_R \cap E_B|$

5. Results

 \rightarrow Compare τ^{a} , τ^{b} with τ^{min} , τ^{max}

 \rightarrow Expectation: if variants give accurate estimates in presence of ties, τ^{a} and τ^{b} should be

6. Implications

 τ -min density for τ -a ≥ 0.9 and τ -b ≥ 0.9

When ties represent uncertainty:

 $\rightarrow \tau^{a}$ can misrepresent correlation

 $\rightarrow \tau^{b}$ can misrepresent correlation a lot

 \rightarrow Possible consequence: false positive results \rightarrow Problem: τ^{b} is the most widely used coefficient!

Bounds τ^{\min} , τ^{\max} can inform decisions by supporting or contradicting τ^{a} , τ^{b} estimates.

7. Conclusion

Uncertainty bounds are important for τ correlation with ties, just as in RBO.

We proposed an algorithm for computing τ^{\min} , τ^{\max}

- Does not generalise to all weight functions.

- Good approximations for reasonable weighting schemes.

Using uncertainty bounds can help inform decisions, when ties in rankings are induced by uncertainty.

Future Work

- Explore missing constraints on w

- Extend the algorithm to provide a distribution of values, akin to the work shown for RBO.

- Implementation in statistical software packages

- Encourage researchers to question how the tools and metrics they use reflect the properties of the rankings in their field.