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1. Background

Alzheimer’s disease (AD): A neuro-degenerative disease that is

the leading cause of dementia in people above 65 years old [1].

Amyloid plaques: Toxic clumps of amyloid-β protein in the brain.
Gene expression: Transcription of DNA into proteins through

mRNA molecules. Counts of each mRNA molecule within a cell

are used to determine expression levels.

Single-cell RNAsequencing (scRNAseq): A technique that mea-

sures cells’ gene expression by isolating them from the tissue.

Spatially resolved transcriptomics: Ameasuring technique, sim-

ilar to scRNAseq, but which preserves cells’ spatial features.

2. Introduction

ScRNAseq data has been used to train models that classify cells

as AD [2]. However this data does not contain information on

cells’ location inside the tissue. Taking advantage of such infor-

mation would allow to study the spatial properties of AD cells.

Amyloid plaques alter nearby cells. In particular, expression of

plaque-induced genes is present in astrocytes, microglia and

oligodendrocytes [3]. This leads to the following hypothesis:

Cells affected by AD should be located close to plaques,

while heatlhy individuals (CT) should be further away.

Spatial transcriptomic data measures fewer genes compared to

scRNAseq data, due to lower precision. Adapting it to the single

cell data is possible with integration methods [4] [5]. Then it can

be used with AD classification models to study the hypothesis.

3. Methodology

Datasets: ROSMAP and SEA-AD (scRNAseq). Xenium (spatial).

Pre-process data:

Reduce scRNAseq data to 1000 most highly variable genes

Subset imputed spatial data to the 1000 training genes

Filter, normalize, logarithmize and scale all data

↓
Train Models on scRNAseq Data:

Linear Classification (LC), Multilayer Perceptron (MLP) and

MLP with a dropout layer (MLP+Dropout)

↓
Impute spatial data missing gene expressions:

Use Tangram for 5 epochs with both scRNAseq datasets

Validate using leave-one-gene-out cross-validation

↓
Classify imputed spatial data:

Use ROSMAP models on SEA-AD imputed data & vice versa

↓
Analyse:

Distance to plaque distribution by labels

(violin plots, Mann-Whitney U Test)

Correlation between AD probability and distance to plaque

(maps of cells’ location within the tissue, Spearman’s rho)

4a. Model and Validation Results

LC MLP MLP+Dropout

ROSMAP 0.6984 0.9909 0.8840

SEA-AD 0.9225 1.0000 0.9997

Table 1. Final training accuracy per model and dataset

Figure 1. Evaluation accuracy per model and dataset

Figure 2. Correlation of imputed and true gene expression

4b. ROSMAP Results

Figure 3. Distribution of predicted labels by ROSMAP

Figure 4. Distance to plaque distribution by labels ROSMAP

Figure 5. Tissue maps colored by distance to plaque and

AD probability from ROSMAP Models

4c. SEA-AD Results

Figure 6. Distribution of predicted labels by SEA-AD

Figure 7. Distance to plaque distribution by labels SEA-AD

Figure 8. Tissue maps colored by distance to plaque and

AD probability from SEA-AD Models

5. Discussion

High training accuracy, low evaluation accuracy.

Decreasing evaluation accuracy is likely caused

by overfitting on training dataset.

MLP model seems to perform the best.

According to Figure 2, imputation is decent, but

not perfect. However, it does not show whole

picture as validation is incomplete.

Majority AD cells by ROSMAP models is likely

due to AD and CT label distribution in the

training data being 2:1. LC model distance

distribution matches hypothesis. No spatial

pattern identified in AD probability maps.

Mann-Whitney U test p-value (≈ 0.0) supports
LC model claim. However, the Spearman test

finds almost no correlation (−0.048) between
AD probability and distance to plaque.

CT label prevalence in SEA-AD results also

consequence of imbalance. AD label distance

distribution suggests model identifies oligoden-

drocytes instead. A common spatial pattern is

visible, but AD probability is too high. Possible

bias in imputation – high AD genes expression.

U test gives all model predictions a p-value of

1.0, coinciding with high but positive correlation
(up to 0.20). This favors the inverse hypothesis,
which is unlikely according to literature.

6. Conclusions

Analysis is not conclusive enough to confirm hypothesis.

As the converse of the hypothesis is implausible according

to literature, the SEA-AD results are likely caused by faulty

models or imputation.

Nevertheless, model evaluation results suggest that MLP

without dropout is the preferred model for classification.

7. Limitations

Xenium data consists of a single donor

This can introduce bias in the results, such as abnormal

spatial distribution of cells. Thus, it is not enough to

critically assess the hypothesis’ validity in general.

Low computational and time resources

Forced to limit imputation to just 5 epochs.

Simple models with few layers and dimensions

More complex models could generalize better.

8. Future work

Attempt experiments with significantly higher number of

imputation epochs.

Tackle model overfitting with regularization and

hyper-parameter optimization.

Prepare datasets more carefully, in order to avoid

proportional imbalance between labels and cell types.
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