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1. Introduction

• Many tasks in science and engineering rely on solving PDEs
• Data-driven PDE solvers → Leverage previous solutions
• PCA-based NN solvers [1] exist, but what are the limitations?

“What are the limitations on the types of inputs and outputs
PCA-NN solvers can provide adequate solutions for?”

2. Methodology
Creating the Dataset:

1. Generate Gaussian Random Fields (GRFs) [2], 27 sets
• Covariance Function (Gaussian, Exp., Sep. Exp.)
• Correlation Length (0.15, 0.1, 0.05)
• Variance (1, 10, 100)

2. Use Finite Element PDE solver, create outputs from GRFs
• Poisson’s Equation, Heat Equation → 54 sets total

Training and Testing the Model(s):
1. Split data into training and testing data

• 2000 input-output pairs, 50-50 split, 1000 each
2. Apply PCA to training data (both input and output)

• Number of PCA components → Accuracy of 99%
3. Train fully connected neural network on training data

• Input and output layers → Number of PCA components
4. Evaluate performance on both training and testing data

• Compare Relative MSE between sets of parameters

PCA-NN (Heat Equation)
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Inputs and Outputs for the Heat Equation, with a
correlation length of 0.05 and a variance of 100

3. Results

• Unexpected results
– Different patterns for both equations
– “Rougher” inputs usually perform better

Poisson’s Equation:
• Gaussian covariance:

– Equal performance for smaller correlation lengths
• Exponential and Separable Exponential covariance:

– Better performance for smaller correlation lengths
• Number of PCA components for output varies significantly

Heat Equation:
• Gaussian covariance:

– Worse performance for smaller correlation lengths
• Exponential and Separable Exponential covariance:

– Better performance for smaller correlation lengths
• Number of PCA components for output stays fairly constant

Smaller variance results in better performance across the board

Training Loss

Training loss for Poisson’s Equation, with
Gaussian covariance, and a variance of 1

MSE vs Accuracy

Training and testing error when varying the
accuracy percentage

4. Conclusion
From the results, we can conclude the following:

• Patterns were discovered in testing error when varying parameters
• Error may vary significantly when changing correlation length
• Performance is adequate for all inputs (error always below 0.35)
• PCA-NN is well suited for solving these types of problems

5. Limitations & Future Work
Difficult to extrapolate from these results → Further research needed:

• See if the patterns hold for other covariance functions
• See if the patterns hold for other Elliptic and Parabolic equations
• Try to discover similar patterns for Hyperbolic equations
• Retry with the number of PCA components held constant
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