Eye tracking-based Sedentary Activity Recognition with Conventional Machine Learning Algorithms

Author:

Violeta Chatalbasheva (v.p.chatalbasheva-1@student.tudelft.nl)

Responsible Professor: Dr. Guohao Lan Supervisor: Lingyu Du Research Project: 23.06.2022

BACKGROUND

Eye tracking is "the process of measuring either the point of gaze or the motion of an eye relative to the head" [1].

Applications:

Analysing gaze signal has various benefits:

- Improving cognitive fitness [2].
- Monitoring the driver's activity [3].

Terminology:

- **Fixation:** maintaining the focus of your gaze at one point.
- Saccade: the rapid eye movement between fixation points.

RESEARCH QUESTIONS

- 1. How to design and implement different feature extraction methods for eye movement signals?
- 2. To achieve good recognition accuracy, what are **the best features** for training conventional machine learning algorithms.
- 3. What is the impact of different subjects on the recognition performance?

METHODOLOGY

Step 1: Data Preprocessing	Step 2: Feature Extraction	Step 3: Feature Selection	Step 4: Classification	
Median filter with a sliding window of 500ms. Normalization.	 Fixation filter [4]: Develop dynamic thresholds. Estimate fixations positions. Low-level gaze features [5]: Fixation-based. Saccade-based. 	 mRMR (minimum-Redundancy Maximum-Relevance): Features strongly influencing the target variable. Correlation between previously selected features. 	Classifiers:	

RESULTS

Performance per activity

- The activities recognized most accurately are *read*, *interpret* and *watch*, Figure 1.
- The *write* activity is misclassified as the other software-related activities: *debug* and *interpret*.

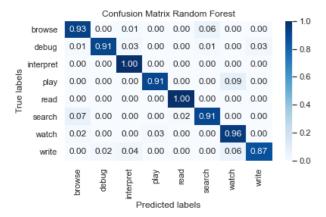


Figure 1: The confusion matrix of the Random Forest classifier.

Feature Importance

- The mRMR selects 18 features for the SVM classifier and 17 for the k-NN model, Table 1, out of 21 features in total.
- All saccade-based features are relevant for a correct classification, while only a subset of the fixation-based features are important.

Selected features by mRMR.				
Saccade-based	Fixation-based			
sacc_right	fix_disp_area			
sacc_down_right	fix_radius			
sacc_down	fix_slope			
sacc_down_left	fix_rate			
sacc_left	fix_count			
sacc_up_left	long_fixation			
sacc_up	brief_fixation			
sacc_up_right				
sacc_variance				
sacc_std				
sacc_mean				

Table 1: The most important features.

Person-Dependent Evaluation

- The top performing classifier is Random Forest, 0.94, Figure 2.
- The second best ML model is SVM, 0.86.
- The k-NN classifier scores the lowest, 0.77.

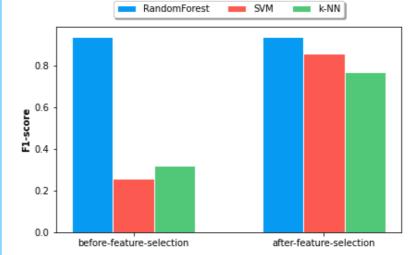


Figure 2: The impact of feature selection on the classification accuracy.

Person-Independent Evaluation

- Apply leave-one-subject-out cross validation.
- Test on an unseen subject: resembles a real-world application of the system.
- The classification accuracy drops, Table 2, in comparison with the person-dependent evaluation, but the order of classifiers performance does not change.

Participant	Random Forest	SVM	k-NN
1	0,703	0,680	0,672
2	0,380	0,380	0,347
3	0,582	0,362	0,383
			333
10	0,921	0,750	0,750
6900			
22	0,712	0,337	0,448
23	0,515	0,404	0,346
24	0,569	0,492	0,392
Mean Accuracy	0,654	0,524	0,480

Table 2: A summary of the recognition accuracy of the person-independent evaluation.

DISCUSSION

- The gaze signals of some subjects in the dataset are missing data points due to large gaps in the timestamp. This influences the accuracy in the person-independent evaluation, subject 10, Table 2.
- In a future research, person-independent evaluation can be performed on a subset of the training subjects to further explore the impact of different subjects on the recognition accuracy.

CONCLUSION

- The Random Forest classifier performs best and most reliably, f1-score of 0.94, followed by the SVM model, f1-score of 0.86 using 18 features.
- The low accuracy of the k-NN classifier proves it unsuitable for the task of sedentary activity recognition due to its nature of storing the training data.
- All saccade-based features together with a subset of fixation-based features, Table 1, contribute to achieving good classification accuracy.

References

- [1] Wikipedia, Eye tracking, 2022.
- [2] Kai Kunze, Masakazu Iwamura, Koichi Kise, Seiichi Uchida, and Shinichiro Omachi. Activity recognition for the mind: Toward a cognitive "quantified self". 2013
- [3] Andreas Bulling, Daniel Roggen, and Gerhard Troester. What's in the eyes for context awareness? 2011.
- [4] Pontus Olsson. Real-time and offline filters for eye tracking. 2007.
- [5] Namrata Srivastava, Joshua Newn, and Eduardo Velloso.
- Combining low and mid-level gaze features for desktop activity recognition. 2018.