
Refactoring with Confidence: Correct-by-Construction Refactoring of Functional Code
Kalle Struik1

Supervisors: Jesper Cockx1 and Luka Miljak1

Background

Haskell is a popular functional programming language (See figure 1 for example code).

Figure 1. A Haskell function that adds two numbers

Agda is a proof assistant and functional programming language. It can be used to create

programs and proof their correctness using dependant types.

The Goals

Show that it is feasible to prove the correctness of a refactoring operation using computer

aided proving techniques.

Define a Haskell-like language for our refactoring to be applied to.

Create a refactoring operation that adds an argument to a function in our Haskell-like

language (See figure 2).

Figure 2. Adding an argument to a function

Construct a proof that, given a well-typed input, our refactoring produces a well-typed

output.

Construct a proof that our refactoring does not change the behaviour of the refactored

program.

The Language

Our Haskell-like language consists of three base types, natural numbers, booleans, and functions.

We also define some operations on these types such as addition, multiplication, and less-than.

Of course, for our language to be useful, we also need variable lookup and function application.

A partial definition of the language constructs can be seen in figure 3. The method used to define

the language and its semantics is based on the PLFA book[1].

Figure 3. Definition of our language constructs in Agda

The Refactoring

Our refactoring function takes three arguments, the program to refactor, a natural number n
indicating what function should be refactored, and a default value for the newly added argu-

ment.

The program to refactor should start with one or more fdef constructs representing top level

function definitions. The nth of these constructs will be the one targeted by the refactoring.

(Example in figure 4)

Figure 4. Example of a program targeted by our refactoring and the effects of the refactoring.

The Proof

Since our language is intrinsically typed, our refactoring will always producewell-typed outputs.

To prove that our refactoring preserves behaviour we define the concept of refactoring equiv-

alence (Agda definition in figure 5). It is defined as normal equality for natural numbers and

booleans, but for function values we do something special. For these we define it as given an

refactoring equivalent argument they produce a refactoring equivalent output.

Figure 5. Definition of refactoring equivalence.

To construct a proof using this definition we have written a series of functions that take an

expression pre and post refactoring and output a proof that the refactoring equivalence relations

holds between them.

Compromises

To make this project feasible within ten weeks we had to compromise on a few points.

Our refactoring is not a source-to-source refactoring like most, but instead converts from

one AST to another.

Our Haskell-like language is only a small subset of Haskell. This subset includes
Function definition

Function calling

Natural numbers and basic operations (addition, multiplication) on them.

Booleans and basic operations (and, or, not) on them.

FutureWork

Every member of our group has created their own refactoring with their own version of a Haskell-

like language. It would be interesting to see if our efforts could be combined to create a group of

provably correct refactoring tools. This posses a couple challenges the primary one being that all

of our proofs depend on our specific choices when defining our respective languages.

Another interesting avenue to explore would be creating a set of smaller composable refactoring

operations that are proven to be correct on the entire language which could be used to create

larger refactoring operations which would then by extension also be correct.

References

[1] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda. August 2022.

Agda: *All Done* 1EEMCS, Delft University of Technology, The Netherlands K.H.Struik@student.tudelft.nl

mailto:K.H.Struik@student.tudelft.nl

