Comparing Optical Flow models on repetitive patterns in real-world images

BACKGROUND

- Optical flow estimation aims to find the 2D **pixel-wise motion** between frames.
- State-of-the art deep neural network models are generally trained on synthetic data.
- When models are trained and evaluated on real-world data, the ground-truth is based on other approximation algorithms.
- One of the challenges faced by the models is repetitive patterns, where different regions look visually identical.
- Models like LiteFlowNet3 and Ef-RAFT claim that they have taken measures specifically against repetitive patterns

RESEARCH QUESTION

- How does the performance of optical flow prediction models compare on repetitive patterns in real-world footage? 1. Which models are most resilient to repetitive patterns in terms of End-Point-Error?
 - 2. Does a low reconstruction error and a high EPE indicate a failure due to repetitive patterns?
 - 3. Which models perform best according to the False Correspondence Index?

METHOD AND TOOLS

- textiles.
- Annotation: Using a special annotation tool, optical flow vectors will be sparsely annotated and stored into the KITTI'15 [1] format for evaluation. When the motion of a certain pattern only consists of an affine transform, it is possible to interpolate the flow between annotated points using homography, making the final annotation semi-dense.
- Evaluation: Using PTLFlow, a collection of models, 69 models with in total 159 model-checkpoint combinations are put under evaluation. The resulting flow predictions will be evaluated using End-Point-Error and F1-All, only where a ground-truth annotation exists.

Ground-truth flow

Figure 2: On the top row two subsequent frames and on the bottom row the ground-truth optical flow interpolated using homography and the error of this interpolation by reconstructing the second frame.

actual second frame

• Data: A dataset containing pairs of 24 image pairs is collected with a focus on repetitive patterns, such as tiled floors, brick walls, fences and

Euclidean distance on reconstructed colo

Author Jesse Klijnsma J.B.Klijnsma@student.tudelft.nl

flownetsd

vcn_smal

maskflowne copefloy

Table 1: End-Point-Error and F1-All scores for all models and checkpoints

- **CCMR+** performs best overall on repetitive patterns in terms of End-Point-Error, although several other models perform very similarly
- A low reconstruction error and a high EPE indicate a failure due to repetitive patterns, as shown in figure 1.
- **CCMR+** performs best according to the False Correspondence Index, showing the strongest resilience against repetitive patterns. MS-RAFT+, CCMR, DPFlow, and LiteFlowNet3s follow closely, with very similar performance

FUTURE WORK

Benchmark runtime performance: The models are only evaluated on their accuracy, while runtime is also a large factor for selecting a model.

Larger dataset: The current dataset is limited to 24 scenes. Including more dynamic and diverse scenes would lead to stronger evidence.

Responsible professor Jan van Gemert

Supervisor Sander Gielisse

Things		Sintel		Kitti		Mix	
EPE	F1-All	EPE	F1-All	EPE	F1-All	EPE	F1-Al
-	-	0.4007	0.00%	0.3914	0.00%	-	-
-	-	-	-	-	-	0.4000	0.07%
0.4069	0.07%	0.4021	0.07%	0.3949	0.00%	-	-
-	-	-	-	0.4234	0.07%	-	-
-	-	0.4521	1.09%	0.4087	0.00%	-	-
0.4380	0.07%	0.4315	0.07%	0.4363	0.00%	-	-
0.4300	0.22%	-	-	0.4672	0.22%	-	-
0.4525	0.07%	-	-	-	-	-	-
0.4624	0.22%	0.4472	0.30%	-	-	-	-
0.4819	0.07%	-	-	-	-	-	-
-	-	0.4850	0.01%	-	-	-	-
0.4203	0.00%	0.4474	0.22%	0.6734	1.20%	-	-
0.5061	0.01%	0.5075	0.00%	-	-	0.5329	0.00%
0.5061	0.01%	0.5075	0.00%	-	-	0.5329	0.00%
0.4817	0.15%	0.4693	0.37%	0.6068	0.80%	-	-
0.6606	2.19%	0.4476	0.25%	0.6214	1.11%	0.4111	0.00%
0.6606	2.19%	0.4476	0.25%	0.6214	1.11%	0.4111	0.00%
iddle va	lues om	itted to	mainta	in readab	sility		
· - · - · - · - · - · - · - · - · - · -					· - · - · - · - · - · -		
8.1114	42.00%	-	-	-	-	-	-
-	-	3.4979	6.90%	18.1352	25.44%	-	-
0.4950	0.15%	0.4665	0.67%	43.3554	50.93%	-	-
27.8040	26.19%	8.7887	15.85%	29.4939	50.95%	-	-
33.9843	26.50%	-	-	-	-	-	-
0.5905	1.46%	1.5735	1.98%	129.1069	57.52%	-	-

Figure 3: False Correspondence Index per model. Showing best performing models in the bottom left.

