
• Continuous Integration (CI) is a core part of modern open-source soĖware (OSS)
• Prior work highlights general CI benefits [1, 2], but oĖen treats all workflows the same
• Key practices like branching strategy and merge behavior may influence CI performance
• However, their impact on CI performance remains unexplored in large-scale empirical studies
• This study analyzes 565 GitHub repositories to compare the eĐects of workflow practices
• Our goal: uncover how workflow aĐects delivery, recovery, and reliability:

 01. Introduction

RQ1: Does feature branch development show a clear improvement in CI KPIs compared to
trunk-based development?

RQ2: Do frequent, small merges correlate with beĘer CI KPIs compared to infrequent, large
merges?

RQ3: How do code management strategies evolve over the lifetime of a project?

We analyzed 565 GitHub repositories using a combination of API mining and local Git
inspection. Projects were grouped by:

Branching model: feature-based vs. trunk-based

Merge style: small vs. large, frequent vs. infrequent

To classify branching models, we extended existing methods [3] by scanning non-default
branches and using PR and commit metadata.

Five Key Performance Indicators Five Key Performance Indicators (KPIs) were calculated per group over monthly time buckets:
Delivery Frequency, Delivery Size, Change Lead Time, Defect Count and Mean Time to
Recovery. Groups were then compared against each other.

We also performed longitudinal analysis on a subset of mature projects to track workflow
evolution over time.

 02. Methodology

project
selection

data
collection

API,
clones

grouping

branching: feature vs. trunk-based
merges: frequent vs. infrequent

merges: small vs. large

KPI analysis

Delivery Frequency
Delivery Size
Change Lead Time
Defect Count

Mean Time to Recovery

(per group)

> > >

 03. Findings

RQ2: Projects with frequent merges generally
show improved CI performance, with a higher
Delivery Frequency and a lower Change Lead
Time. Defect Count and Mean Time to
Recovery show less clear paĘerns, however.

Frequent merges show general improvements, Frequent merges show general improvements,
while merge size appears to not have as strong
of an eĐect.

Table 2: average KPI values per merge group (S = small, L = large, F =
frequent, I = infrequent).

RQ1: Feature-based workflows show
improvements in Delivery Frequency and
Defect Count, while trunk-based workflows
lead in the other KPIs.

However, few projects utilize a trunk-based However, few projects utilize a trunk-based
workflow (3% of our dataset), and it is possible
that our findings can be aĘributed to other
(possibly external) factors.

Table 1: average KPI values per branching model group.

Figure 2: Trend in the ratio of commits made directly to the default branch

RQ3: We find that, as projects mature, they tend to adopt feature-based workflows, as observed
in Figures 1 and 2.

However, merge size and frequency appears to stay consistent over a project’s lifetime. The
average merge size shows a near flat slope of -8.97 lines of code per month decrease, with an R2
of just 0.0006. Similarly, the average number of days between merges decreases by 0.015 per
month (R2 = 0.0039). These results are not significant enough to highlight a trend.

Figure 1: Branching model over time

Our findings suggest that development teams should
choose a workflow that suits their projects’ needs.
Feature-based workflows oĐer modularity and review
infrastructure, but may introduce delays unless tightly
managed. Trunk-based development, while rare, may
remain viable in smaller teams or low-collaboration
environments. However, these findings may stem from the
underrepresentation of trunk-based workflows in our
dataset.

Merge frequency emerges as a consistent predictor of CI
success, while merge size has less of an observable eĐect.
As such, teams should prioritize frequent, testable merges
where possible.

Additionally, we find that projects trend away from
trunk-based development over time
Additionally, we find that projects trend away from
trunk-based development over time, and that merge size
and frequency stay relatively constant.

Future Work
Longitudinal repository tracking:Longitudinal repository tracking: tracking GitHub
repositories in real-time can provide data that is otherwise
inaccessible in our snapshot-based methodology. Such
data includes how long lived feature branches tend to be,
beĘer detection of rebasing, when collaborators leave or
join, and how they interact with workflows.
Developer-centric data:Developer-centric data: these insights could be
complemented by developer surveys or interviews. These
could fill in missing context about developer satisfaction
and external tool usage. This could also be correlated with
longitudinal tracking to identify trends in developer
aĘraction to projects over time.
The measurability gap in trunk-based development:The measurability gap in trunk-based development:
contrary to the paĘerns in our dataset, trunk-based
development is extremely common [4]. However, many
such repositories are either small, or personal projects,
making it diĐicult to evaluate with our current methodology.
Future work should explore new methods of evaluating such
projects.

LimitationsLimitations
• Several KPIs rely on GitHub Releases, which not all
projects use.
• The dataset may include mirrors or archives, distorting KPI
measurements.
• Our method for detecting rebases is only an • Our method for detecting rebases is only an
approximation, and as such branching model
misclassifications are possible.

 04. Conclusion

References
[1] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality and
productivity outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 805–816, 8 2015

[2] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov,
and Bogdan Vasilescu. The impact of continuous integration on other
software development practices: a large-scale empirical study. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’17, pages 60–71. IEEE Press, 2017.

[3] Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. The
impact of the adoption of continuous integration on developer attraction
and retention. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 491–494, 2017.

[4] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. An in-depth study of the promises and
perils of mining GitHub. Empirical Software Engineering, 21:2035–2071,
2016. Publisher: Springer.

Author: Serban Ungureanu
ungureanu-2@student.tudelft.nl

Responsible professor: Sebastian Proksch
Supervisor: Shujun Huang

The impact of branching and merging strategies
on KPIs in open-source software

