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1. Introduction and Background

Continual Learning deals with training a model on a
changing data distribution.

Plasticity Loss is a phenomenon within Continual
Learning: as data distribution changes, a model’s abil-
ity to adapt to new information diminishes.
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Figure 1: A typical example of plasticity loss. A model is
sequentially trained on different versions of the MNIST dataset.
Each version uses a different pixel permutation. As the model learns
more tasks, it gets worse at learning new ones, shown by decreasing
accuracy.

Dohare et al. introduced a method called Continual
Backpropagation for mitigating plasticity loss [1]:

1 A small number of neurons are continually
selected per layer to be reset.

2 A neuron is reset by reinitialising incoming
weights and setting outgoing weights to 0. .

Our goal: investigate the layerwise dynamics of
Continual Backpropagation.

2. Experimental Setting

We train models on datasets, using different learning algo-
rithms:

(a) Versions of Continual Backprop:
1. Regular CBP.
2. Replacing all layers separately.
3. No replacement - regular BP.
4. Replacing layers 2-L.

(b) L2 Regularisation

Dataset: Continual Permuted MNIST. Base model:
5-layer ReLU-based MLP.
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Figure 2: Continual Permuted MNIST dataset. For every
task, the pixels of all MNIST samples are permuted using a
task-specific permutation, creating a unique dataset.

3. The First Layer Phenomenon

Core findings.
#1: The deeper a layer is, the less replacement helps.
#2: Layer 1 replacement yields CBP-level performance.
We call result #2, the first layer phenomenon.
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Figure 3: Training evolution of CBP variants on the base model. The
figure directly depicts findings #1 and #2.

We obtain similar findings for:

1 Wider and narrower networks.
2 Deeper and shallower networks.
3 Different activation-based networks.

Table 1: The effects of varying replacement rates by layer on different
neural networks. Every row corresponds to a particular network,
every column – to a different version of CBP the neural network was
trained on. Best layer for replacement is underlined. Numerical
values depict percentages – the average value over last 15% of tasks.

Baseline Replacing Individual Layers
All Layers Layer 1 Layer 2 Layer 3 Last Layer

Varying Network Widths
Width 20 79.2 ± 0.1 76.1 ± 0.2 59.5 ± 1.3 58.2 ± 0.6 59.1 ± 0.9
Width 50 82.3 ± 0.1 80.7 ± 0.2 56.1 ± 2.3 60.2 ± 1.0 52.4 ± 2.3
Width 100 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Width 150 85.5 ± 0.0 84.2 ± 0.0 75.2 ± 0.1 71.1 ± 0.3 66.6 ± 0.3
Width 200 86.0 ± 0.0 84.8 ± 0.0 77.7 ± 0.3 74.0 ± 0.2 69.9 ± 0.4
Varying Network Activation Functions
ReLU 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
SELU 76.2 ± 0.1 76.3 ± 0.1 76.2 ± 0.1 76.6 ± 0.2 76.5 ± 0.1
Tanh 69.2 ± 0.3 69.1 ± 0.5 69.1 ± 0.1 69.0 ± 0.5 68.6 ± 0.3
Varying Network Depths
Depth 2 87.0 ± 0.0 86.8 ± 0.1 81.9 ± 0.0 - 81.9 ± 0.0
Depth 5 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Depth 8 82.9 ± 0.0 82.5 ± 0.1 71.7 ± 0.2 67.6 ± 0.8 65.5 ± 0.2
Varying Network Depths, Same Number of Parameters
Depth 2 87.3 ± 0.0 87.1 ± 0.1 82.7 ± 0.0 - 82.7 ± 0.0
Depth 5 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Depth 8 82.3 ± 0.1 82.2 ± 0.1 70.1 ± 0.5 65.7 ± 0.2 64.3 ± 0.6

Table 1 interpretation:

1 Most rows have decreasing values reading from
left to right (finding #1).

2 In most rows, replacing the first layer gives the
best accuracies (finding #2).

4. CBP Fails with Non-ReLU Activations

We found a flaw within regular Continual Backpropagation –
it does not stop non-ReLU models from losing plasticity.
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Figure 4: Accuracy evolution for MLPs with 3 different activation
functions. Regular CBP does not perform for non-ReLU networks.

5. Understanding First Layer Phenomenon

Focus on 4 critical versions of CBP:

0 190 380
Task index

70

80

Ac
cu

ra
cy

 (%
)

Replacing all layers
Replacing layer 1
Replacing layers 2-6
No replacement

Figure 5: Training evolution of CBP variants on the base model.

The result above suggests that first layer is stronger than all
other layers combined.

To explain the first layer phenomenon, we attempted to relate
the results with:

■ Dead neuron counts
■ Weight norm statistics
■ Feature ranks

■ Curvature of the loss
landscape

■ Feature utilities

Gradual increase in weight norms explains the first
layer phenomenon.
Weight magnitude inflation is known to induce plasticity loss.
Figure 6 shows that if the first layer is not replaced, it signifi-
cantly drives weight magnitude increase.
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Figure 6: Left: whole network’s weight magnitude evolution over training.
Right: layerwise weight distribution – average layer weight norm.

6. Discussion and Future Work

Weight magnitudes. We showed that replacing
the first layer stabilises the whole model’s weight
magnitudes. However, the reason behind that is
still unknown.

Single dataset. Only a single dataset was used
to derive the results; hence, results should be repli-
cated with different datasets.

Non-ReLU models. We showed CBP does not
perform on non-ReLU models. Questions arise:
why? what methods could tackle this problem?

7. Conclusions

We find that:

1 Resetting neurons in earlier layers leads to
increasingly better performance.

2 Resetting neurons only in the first layer
achieves performance close to CBP – first
layer phenomenon.

3 The first layer phenomenon can be
explained through the lens of controlling a
model’s weight magnitudes.

4 There is a flaw in CBP: it does not work
on non-ReLU activations.

8. Appendix: Bit-Flipping Problem

Experiments on another dataset, introduced by [1],
were performed, but were unsuccessful, as CBP
failed to outperform L2 baseline:
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