

Background

Information Retrieval (IR) is about retreiving relevant documents (candidate given a query and ranking them by relevance. Some ranking model types:

- Sparse/Lexical Models retrieval by term matching; simple but generally worse than dense models as it misses context
- Dense/Semantic Models retrieval by creating embeddings and evaluate similarity based on distance; captures contextual information but require a lot of time and resource
- Hybrid Models combines results of sparse and dense models
- Retrieve-and-rerank retrieves candidates using sparse models then reranks using dense models

Retrieve-and-rerank with Fast-Forward Indexes is an approach to devise an efficient neural ranking model motivated by [1] (Fig, 1).

Rank Fusion Functions merge the result of lexical and semantic scores to rerank the documents

Depending on the domain, certain scores information are more useful than the other. Rank fusion functions control how and to what extent each score influences the final rank

Different types of rank fusion functions:

- Parametric vs. Non-
- parametric
- Score-based vs. Rankbased
- Voting Rule

Figure 1: Fast-Forward Index Framework

Research Question

"What is the impact of the rank fusion function?" 1. How does the rankings change in relation to semantic and lexical

- ranks using different rank fusion functions? 2. How does using different rank fusion functions impact the ranking effectiveness in different domains?
- 3. How does using different rank fusion functions impact the **latency** in different domains?

References

[1] Jurek Leonhardt, Henrik Muller, Koustav Rudra, Megha Khosla, Abhijit Anand, and

Avishek Anand. Efficient neural ranking using forward indexes and lightweight encoders

ACM Trans. Inf. Syst., 2023. Just Accepted

[2] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models, April 01, 2021 2021. Accepted at NeurIPS 2021 Datase and Benchmark

Track.

[3] Sebastian Bruch, Siyu Gai, and Amir Ingber. An analysis of fusion functions for hybrid retrieval. ACM Transactions on Information Systems, 42(1):1–35, 2024. [4] Antonio Ju'arez-Gonz'alez, Manuel Montes, Luis Villase nor-Pineda, David Pinto, and Manuel P'erez-Couti no. Selecting the N-Top Retrieval Result Lists for an Effective Data Fusion, volume 6008. 2010.

[5] Andr'e Mour'ao, Fl'avio Martins, and Jo'ao Magalh'aes. Inverse square rank fusion for multimodal search. 2014.

[6] Shengli Wu and Xiaoqin Zeng. Condorcet Fusion for Blog Opinion Retrieval. 2012.

Rank Fusion in Neural Ranking Model

The general setup and variables	of the experin	nent elaborated:
 Models chosen: BM25, TF-IDF 	-based sparse	e model, and TCT-ColBERT, BERT-based
dual encoder dense model		
 Dataset for evaluation [2]: 		
DATASET	DOMAIN	TASK
MS MACRO PsgTREC DL 19	Misc	Passage Retrieval
MS MACRO PSGIREC DL 20	/V\ISC Eingnoo	Passage Refrieval
BEIR NECorpus	Rio-Medical	Bio-Medical IR
BEIR QUORA	Quora	Duplicate Question Retrieval
BEIR DBPedia	Wikipedia	Entity-Retrieval
BEIR FEVER	Wikipedia	, Fact Checking
BEIR ArguAna*	Misc	Argument Retrieval
BEIR CQADupStack (English)*	Misc	Argument Retrieval
BEIR Scifact*	Scientific	Fact Checking
BEIR SCIDOCS*	StackEx.	Duplicate-Qeustion Retrieval
 *These datasets do not have a Chosen various types of rank Score-based fusion - input Convex Rank Fusion - normalization [3] 	dev set used for fusion function ts the scores of parametric; id	by validation so tested in zero-shot fashion ons directly lentity, min-max normalization, z-score $+ (1 - \alpha)f$ (a.d)
CONVEX ⁽⁴⁾	$(q, u) = u_{SEM}(q, u)$	$(I) _{LEX}(q, u)$
 Rank-based fusion - input Reciprocal Rank Fusio 	ts the ranks n - parametric	c (2 parameters) [3]
$f_{RRF}(q,$	$d) = \frac{1}{\alpha + r_{a} - m_{a}(q,d)}$	$\frac{1}{\alpha+r_{a+1}(q,d)}$
CombMNZ 0 non-parce	ametric [4]	SEM -
$combMNZ(d_k) = 2$	$\times \{(L - r_{LEX}(q))\}$	$(d) + 1) + (L - r_{SEM}(q, d) + 1)$
Inverse Square Rank F	usion - non-po	arametric [5]
$f_{ISR}(q,$	$d) = 2 \times \left(\frac{1}{r_{r_{FF}}(q, d)}\right)$	$\frac{1}{d^2} + \frac{1}{r_{\text{SFM}}(q,d)^2})$
 Voting Rule (rank-based f 	usion)	
 Condorcet Fuse [6] - c max normalized converse validated. 	onsiders pairw ex rank fusion	vise preference relationship; uses min- as a tie breaker. The convex function is
Sparse and FF indexes are built in	n davance. The	pipeline is equivalent to the framework
lescribed in Figure 1.		
 Ranking in Relation to Seman lexical and dense ranks are th 	ne axes and fir	nal rank after interpolation is the hue
Kanking Effectiveness		
 Malidate on datasets with 	a dev set for p	arametric functions
 Run the experiment with e 	ach rank fusio	n function
• Latency		
 Datasets used are Arguan 	a and QUORA	
 Sample 100 queries and re 	trieve 100 can	didates
 Using timeit module, meas 	sure latency of	the interpolation and metrics
computation stage with ea pipeline is ran for multiple average of the fastest run	ach rank fusior times. Several reported.	n function. For each experiment, the rounds of these runs are computed. The
4 Results and Dis	cussion	
	100	Reciprocal Rank Fusion (Figure 2)
월 80 월 8	- 80	 Larger alpha and smaller beta:
antic Re Mank 09 09 09 00 00 00 00 00 00 00 00 00 00	ank 09	lexical < semantic
40 - to 40 We S 20 - 20 - 20 - 20	40 - 20	Smaller alpha and larger beta:

• Greater the parametric value, it mitigates the effect of the higher ranks. Thus, even if alpha and beta are equivalent, the ranking interpolation changes depending on the value

Figure 2: Reciprocal Rank Fusion

Lexical Rank

(b) $\alpha = 100, \beta = 1$

20 40 60 80 100

(d) $\alpha = 1000, \beta = 1000$

Lexical Rank

Lexical Rank

(a) $\alpha = 1, \beta = 100$

20 40 60 80

Lexical Rank

(c) $\alpha = 1, \beta = 1$

60

4 Result and Discussion (Continued)

20 40 60 8

Lexical Rank

(b) CombMNZ

Figure 4: Inverse Square Reciprocal, CombMNZ, Condorcet Fuse

0.4

(60, 60)

0.1

Table 1: Validation result **Ranking Effectiveness Result** (Table 2, 3) Convex rank fusion and their normalization variants yield the **best** ranking effectiveness

MS MARCO FiQA NFCorpus QUORA DBPedia FEVER

0.5

0.4

(1, 1)

0.5

- Reciprocal rank fusion is the second best as it has the highest score excluding the convex functions
- Non-parametric approaches worse than the

0.5

03

05

- parametric approaches in general. However: • There is smaller difference in the scores for the
- balanced datasets
- ISR has similar perforamance as reciprocal when the reciprocal's alpha and beta values does not have a large contrast
- Condorcet Fuse has similar performance as CombMNZ

Discussion

20 40 60 80 100

Lexical Rank

(a) Inverse Square Rank Fusion

Convex

Reciprocal

Convex (Min-Max)

Convex (Z Score)

Condorcet Fuse

- Score-based fusion is better than rank-based fusion since it does not discard the exact scores
- Parametric approaches are better than nonparametric approach due to its flexibility to adjust the weights of lexical and semantic scores

	Arguana	QUORA
Convex	171	446
Convex (Min-Max)	190	438
Convex (Z Score)	174	445
Reciprocal	174	446
Condorcet Fuse	42108	54190
Inverse Square Reciprocal	177	437
CombMNZ	172	460

result

Latency Experiment Result (Table 4)

20 40 60 Lexical Rank

0.1

0.4

0.4

0.3

(80, 20) (100, 1)

(c) Condorcet Fuse $\alpha = 0.0$

0.0

0.1

0.1

0.2

- establish the preference relationship

Conclusion and Future Work

RQ 1. How does the rankings change in relation to semantic and lexical ranks using different rank fusion functions?

- Parametric functions freely manipulate the influence that lexical and semantic scores have
- On the other hand, non-parametric functions put equal weight on them by default

RQ 2. How does using different rank fusion functions impact the ranking effectiveness in different domains?

- Convex > Reciprocal > CombMNZ, ISR, Condorcet Fuse
- Score-based > Rank-based
- Parametric > Non-parametric
- Non-parametric fusion function performance
- dependent on the domain

Delft University of Technology <u>Author:</u> Gayeon Jee (G.Jee@tudelft.nl) <u>Supervisor:</u> Jurek Leonhardht <u>Responsible Professor:</u> Avishek Anand

		-
	- 100 - 80 - 60 yugy - 40 - 20	Convex Rank Fusion (Figure 3) • Larger alpha: lexical > semantic • Smaller alpha: lexical < semantic • Linear gradient For non-parametric functions (Figure 4), the lexical and
> 100	- 80	 semantic scores always have equal weight. Inverse Square Rank Reciprocal : a high rank in one list dominates the other rank CombMNZ: additive of the ranks and no further manipulation
	- 00 ×	

 Condorcet Fuse: a low rank in one list dominates the other rank due to the nature of preference relationship

Validation Result (Table 1)

- · Generally, better performance with more contribution of the dense score
- Datasets with balance between the two scores: FiQA (Arguana, CQADupStack), NFCorpus (SCIDOCS, Scifact), QUORA
- Datasets that in favor of dense scores: MS MARCO, QUORA, DBPedia, FEVER

	TREC '19	TREC '20	FiQA-2018	NFCorpus	QUORA	DBPedia	FEVER
BM25 (No Interpolation)	0.480	0.494	0.253	0.322	0.768	0.274	0.427
Convex	0.679	0.641	0.311	0.335	0.841	0.379	0.663
Convex (Min-Max)	0.683	0.655	0.310	0.336	0.842	0.381	0.670
Convex (Z Score)	0.682	0.652	0.310	0.335	0.842	0.378	0.672
Reciprocal	0.679	0.641	0.298	0.331	0.828	0.356	0.663
Condorcet Fuse	0.629	0.592	0.300	0.329	0.821	0.337	0.582
Inverse Square Reciprocal	0.603	0.592	0.294	0.330	0.824	0.352	0.622
CombMNZ	0.623	0.597	0.300	0.329	0.820	0.337	0.579

Table 2: Ranking effective experiment nDCG score for validated datasets

	Arguana	CQADupStack	SCIDOCS	Scifact
BM25 (No Interpolation)	0.342	0.280	0.147	0.672
Convex	0.363	0.319	0.155	0.688
Convex (Min-Max)	0.336	0.318	0.150	0.684
Convex (Z Score)	0.340	0.319	0.157	0.687
Reciprocal	0.357	0.311	0.151	0.668
Condorcet Fuse	0.341	0.306	0.149	0.664
Inverse Square Reciprocal	0.352	0.309	0.149	0.669
CombMNZ	0.344	0.305	0.149	0.666

Table 3: Ranking Effective Experiment nDCG score for zero shot datasets

• All the rank fusion functions have a similar latency except for Condorcet Fuse • Condorcet Fuse requires iteration through all possible pairs of the documents to

• The latency is affected by the size of datasets. However, it is likely to be due to the metrics computation as it requires accessing the actual relevance from the grels • Given this result, convex rank fusion is the most effective fusion function that has a good balance between ranking effectivess and latency

RQ 3. How does using different rank fusion functions impact the latency in different domains?

- Latency for interpolation same for all domains
- Condorcet Fuse a lot slower than other functions
- Convex fusion function is the most effective fusion function

Future Work

- Further explore the parameters of the parametric functions
- Especially reciprocal function which take two parametric values
- Expand on the models experimented