

1 - Introduction

- Documents in rankings can be assigned a graded relevance score from 0 to M to i how **relevant** they are to a user.
- Traditional rank similarity metrics like Rank-Biased Overlap (RBO) [3] compare rank based on **item identity** only.
- This ignores cases where different items may have equal or similar relevance to a u • Ranking S: $\langle doc1 (rel=3), doc2 (rel=2), doc3 (rel=0) \rangle$
- Ranking L: $\langle doc4 (rel=3), doc5 (rel=2), doc6 (rel=0) \rangle$
- RBO would state that these are completely dissimilar.
- Therefore, similarity based on relevance—rather than just item overlap—is needed.

Research Question: How can Rank-Biased Overlap (RBO) be extended for relevance values

2 - Background: Identity-Based RBO

- **RBO** is a rank similarity metric that:
- Is **top-weighted**, giving more weight to agreements near the top of the ranking.
- Supports non-conjoint lists, rankings do not need to have the same items.
- Can handle ranking pairs L and S of **different** sizes $(|S| = s \le l = |L|)$.
- Assumes the rankings provided are prefixes of indefinite rankings.
- RBO calculates **agreement** between rankings S^{id} and L^{id} at each rank depth d as t proportion of **overlapping** items up to that depth:

$$A_{S_{:d}^{\mathsf{id}}, L_{:d}^{\mathsf{id}}, d}^{\mathsf{id}} = \frac{|S_{:d}^{\mathsf{id}} \cap L_{:d}^{\mathsf{id}}|}{d}$$

• RBO is a **weighted sum** of these agreements:

$$\operatorname{RBO}_{L,S,p} = \frac{1-p}{p} \left(\underbrace{\sum_{d=1}^{s} A_{L,S,d} \cdot p^d}_{1} + \underbrace{\sum_{d=s+1}^{l} A_{L,S,d} \cdot p^d}_{2} + \underbrace{\sum_{d=l+1}^{\infty} A_{L,S,d} \cdot p^d}_{3} \right)$$

where $p \in (0, 1)$ is a **persistence** parameter controlling how **top-weighted** the metr

- The RBO equation is split up in 3 parts, where at depth d:
- Part 1: Items of both L and S are known.
- Part 2: Item of S is unknown, L is known.
- Part 3: Items of both rankings are unknown.
- Three scores are calculated, with different assumptions about the unknown parts: • RBO_{MIN} assumes the worst-case continuation for the unseen parts.
- RBO_{MAX} assumes the **best-case** continuation for the unseen parts.
- RBO_{EXT} extrapolates overlap and agreement based on the prefixes.

3 - Relevance-Based RBO

- Agreement is redefined in terms of cumulative gain (CG) [2] to compare rankings b their **relevance profiles**.
- Gain quantifies how much utility a document with relevance score x provides. Two gain functions, with the adjustable hyperparameter θ , are:
- Linear: $G_x = \theta \cdot x$,
- Exponential: $G_x = \theta^x 1$.
- CG is the sum of gain scores up to depth d in a ranking.
- **Relevance-based agreement** at depth *d* is defined as:

$$A_d^{\mathsf{CG}} = 1 - \frac{|\mathsf{CG}_{S,d} - \mathsf{CG}_{L,d}|}{\mathcal{N}_d}$$

where \mathcal{N}_d is a **normalization** factor.

• Plugging this A_d into the RBO formula yields a new metric reflecting the **informational similarity** of the rankings, rather than just **overlap**.

Extending Rank-Biased Overlap (RBO) to Relevance Profiles

Author: Thijs Houben (t.h.j.houben@student.tudelft.nl)¹ Supervisor & Responsible Professor : Julián Urbano (j.urbano@tudelft.nl)¹

¹EEMCS, Delft University of Technology, The Netherlands

indicate	Two normalization approaches are proposed.
kings	• Local: $\mathcal{N}_d^{loc} = \max\{CG_{L^{rel},d}, CG_{S^{rel},d}\}$ normalizes b gain at depth d . (Edge cases due to CG = 0 have be
user:	• Global: $\mathcal{N}_d^{\text{glo}} = G_M \cdot d$ normalizes by the maximum where M is the maximum relevance score.
•	5 - Calculating RBO _{MIN} , RBC
s?	 1. RBO_{MIN} - Worst-case continuation Part 2: Construct a dynamic programming table with the m depth d. Then, select score from table that together with part 3: Assume difference increases by G_M at each depth a 2. RBO_{MAX} - Best-case continuation No general method was found to calculate RBO_{MAX} for all r
	 Part 2: Greedily assume continuation of S^{rel} that minimizes Part 3: Assume difference decreases by G_M at each depth a 3. RBO_{FXT} — Extrapolated continuation
the	 Part 2: CG_{S^{rel},d} = d·CG_{S^{rel},s}, extrapolate based on the cumula Part 3: A_d = A_l, assume agreement stays the same and calc
	6 - Test setup and
ric is.	 Tests were performed using real world data from th simulated data generated using adapted code from TREC data resulted in 177650 pairs of rankings: 110300 pairs were graded on scale [0,1,2,3], represented w 67350 pairs were graded on scale [0,1,2,3,4], represented w 2 highly conjoined simulated datasets of 10000 randomain of [0,1,2,3,4]
	 Rankings were generated with a target tau between 0.5 and and 100. Relevance scores were assigned based on the dist Rankings were generated with target tau between 0.5 and 0 scores were assigned twice. Once 0 and once 1 was given
	 Test were performed to: Compare the different normalization factors (Figure 1-4) ar Show the effect of different maximum relevance values (Figure 5) Show the effect of different dominant relevance values (Figure 4). Data points presented are the DRO
pased on	• Data points presented are the RBO _{EXT} scores after Persistence was set to $p = 0.9$.
o common	

Figure 1: Comparisons between identity-based RBO and the 2 variants for relevance based RBO. TREC data and linear gain used

rbo id

• M = 3

0.8 1.0

— y = x

0.2 0.4 0.6

rbo ic

1 - Different normalization factors

- by the **maximum observed** cumulative een omitted).
- **possible** cumulative gain at depth d,

D_{MAX} and RBO_{EXT}

- **minimum** RBO score for all reachable CG at part 3 leads to the minimum score. and calculate using closed form equations.
- possible gain functions, just for linear. s the difference between CG scores. and calculate using closed form equations.
- lative gain of the **prefix** of S^{rel} . Iculate using closed form equation.

Results

- he ad hoc track from TREC, and Corsi and Urbano [1].
- with orange in the scatter plots. with **blue** in the scatter plots.
- nking pairs were created with a relevance
- nd 1.0 and then **truncated** to lengths between 10 stribution from 2014 TREC data. 0.9 and **truncated** to length 100. Relevance probability .92, the rest 0.02. Starts with $A_1 = \frac{1}{4}$.
- and identity-based RBO (Figure 1 & 4). gure 1 & 4). gure 3).
- evaluating up to depth d = 100.

dominant relevance scores (0,1) using synthetic data and linear gain

- not, as is implied by the scores being **uncorrelated** (Figures 1 & 2).
- always **higher** than Local (Figures 1 & 2).
- **misses** similarity with relevance's of 0 (Figure 3).

- and maximum relevance.
- scores for instance.
- 2002.
- 2010.

Figure 2: Comparisons between identity-based RBO and the 2 variants for relevance based RBO. Synthetic data and linear gain used

gain functions for global (left) and local (right) normalization using TREC data

7 - Conclusions

• RBO using **relevance** captures similarity between rankings that **identity-based** RBO does

• The scores from **Global** and **Local** normalization are **correlated** and the score from Global is

• Global normalization's scores tend to inflate when the maximum relevance is higher (Figures 1 & 4) and it **captures** similarity between all similar relevance's well (Figure 3).

• Local normalization is less sensitive to higher maximum relevance (Figures 1 & 4), but

• Using exponential gain instead of linear leads to higher scores for Global normalization, while it tends to lead to **lower** scores for Local normalization (Figure 4).

8 - Future work

Procedure to calculate RBO_{MAX} for exponential, or more generally, arbitrary gain functions. • Make the proposed metrics **tie-aware**, like recently done for **identity-based** RBO [1]. • Further analysis of the effect of **changing parameters** such as the gain function, persistence

• Explore more ways to define RBO for relevance values, using the **distribution** of relevance

9 - References

[1] Matteo Corsi and Julián Urbano. The treatment of ties in rank-biased overlap. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024, page 251–260. ACM, July 2024. [2] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446, October

[3] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst., 28(4), November