
SOURCE LISTING

VARIABLE INSPECTION

BREAKPOINTS + LINE STEPPING

02. METHODOLOGY

01. INTRODUCTION
→ Developers spend half of their time debugging software[1].
Debuggers are powerful tools that aid us in this process, providing
features like breakpoints, variable inspection, and line stepping.
→ While debugging is seamless in mature languages, adding it to
emerging ones like Hylo [2] presents challenges. Debugging support
is crucial for improving usability and driving language adoption.
→ Research question: How can modern debugging infrastructure be
used to support source-level debugging of Hylo code?

DEBUGGING HYLO
03. DESIGN

REFERENCES
[1] Abdulaziz Alaboudi and Thomas D LaToza. “An exploratory study of debugging episodes”.
In: arXiv preprint arXiv:2105.02162 (2021).
[2] Dimitri Racordon et al. “Implementation Strategies for Mutable Value Semantics”. In: Journal of Object
Technology 21.2 (2022). doi: 10.5381/jot.2022.21.2.a2. url: https://www.
jot.fm/issues/issue_2022_02/article2.pdf.
[3] https://lldb.llvm.org/
[4] https://dwarfstd.org/doc/DWARF5.pdf
[5] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program analysis &
transformation”. In: International symposium on code generation and optimization, 2004. CGO 2004. IEEE.
2004, pp. 75–86.
[6] https://clang.llvm.org/

Student: Tudor-Stefan Magirescu
Contact: magirescu@student.tudelft.nl

Professor: Andreea Costea
Supervisor: Jaro Reinders

→ LLDB Command:
source list -n <function-name>
→ Requirement: Encode each Hylo function definition type (i.e.,
global, member, generic) to DWARF information.
→ Approach: Modify the compiler’s transpilation phase to
propagate function definition information from Hylo IR to LLVM IR.

→ LLDB Commands:
break set -n <function-name>, step, next, finish
→ Requirement: Annotate LLVM IR instructions with metadata that
associates them with their corresponding locations in the source
code.
→ Approach: Modify the compiler’s transpilation phase to propagate
source-level metadata from each Hylo IR instruction to its
corresponding LLVM IR instruction(s). This approach works in most
cases, with a few exceptions.

→ LLDB Command:
print <variable-name>; frame variable
→ Requirement: Encode Hylo’s type system and variables to DWARF.
→ Approach: We modify the transpilation phase to encode types, local
variables and function parameters. For user-defined structures, we
extend the lowering phase to recover necessary information.
Additionally, we adjust the LLVM IR emission for function parameters.

→ Strategy: Enhanced the Hylo Compiler to emit DWARF information.
LLDB parses this metadata and enables source-level debugging.
→ Observation-Driven Approach: Studied Clang’s[6] DWARF output
for C++ and replicated it for similar Hylo constructs.
→ Incremental Design: Gradually added DWARF support for Hylo
constructs, enabling one core debugging feature at a time.
→ Prototype Hylo Compiler: Extended Hylo’s Compiler to implement
our design, showcasing its practicality.

→ Debuggers are complex, relying on the Operating System and CPU
for features such as breakpoints.
→ Issue 1: Debugging is platform-dependent; Solution: Debuggers
like LLDB[3] bridge the gap across platforms.
→ Issue 2: Assembly-level debugging is impractical; Solution: The
compiler bridges this gap by emitting debug information.
→ Debug information allows the debugger to reconstruct source-
level details (e.g., variables). Compilers typically emit this information
in a standardised format (e.g., DWARF[4]).

Figure 1: The architecture of the Hylo Compiler

Figure 2: Sample LLDB output of the source list command

→ The Hylo Compiler is LLVM-based[5] (i.e., the Hylo Compiler
translates the Hylo code to LLVM’s internal representation (LLVM IR),
which is then compiled by LLVM to machine code).
→ If source-level information is passed to LLVM IR, LLVM can
generate the DWARF information for our platform.
→ The Hylo IR already preserves some source-level information (e.g.,
for accurate error diagnostics).

Figure 3: Sample LLDB output of the breakpoint command

Figure 4: Sample LLDB output of the frame variable command,
executed after the breakpoint shown in Figure 3.

04. LIMITATIONS &
FUTURE WORK
→ We emit accurate DWARF info for key Hylo features, such as
variables, functions, user-defined types and generics.
→ We identified and explored the following limitations:

1.Scope Modelling: We assume that variables live throughout the
function body, ignoring nested scopes (e.g., if statements), or Hylo’s
fine-grained variable lifetimes.

2.Expression Evaluation: LLDB relies on Clang, limiting expression
evaluation support. The Hylo compiler could be integrated via an
LLDB plugin.

3.Existential Types: Hylo has dynamic types (i.e., existentials). An
LLDB plugin is required to show the concrete runtime types of
existentials.

→ Future work may include IDE integration and debugging Hylo’s
concurrency model.

PROVIDING DEBUGGING SUPPORT TO A MODERN,
NATIVELY-COMPILED PROGRAMMING LANGUAGE

