EFFECT OF GRANULARITY ON SARS-COV-2 VARIANT ABUNDANCE ESTIMATES USING DOMESTIC WASTEWATER.

AUTH Y.Kalia

I. BACKGROUND

- RNA material present in domestic wastewater can be used to estimate abundances of COVID-19 variants[1] using the Baaijens pipeline.
- Predictions of RNA material can be made at high granularity(HG) i.e. lineage level, or low granularity(LG) i.e. variant level.
- Granularity level affects prediction accuracy.

2. RESEARCH QUESTION

Do predictions become more accurate at lower granularity?

- How does prediction accuracy differ at different granularities?
- What do the results at different granularities theoretically illustrate about the prediction pipeline.

<u>3. EXPERIMENTS</u>

- •Variants simulated Alpha, Delta and Mu.
- •Single Lineage experiment with Connecticut(CT)(small scale) and then US reference set(large scale)
- •Combined Lineage experiment with US reference set with all lineages in the same sample.
- •Experiment Steps/Process: Kallisto constructs a graph with k-mers from reference set then pseudo aligns wastewater sequences to find closest lineage in reference set to sequence.

•Key performance indicator - **Relative prediction** error, to measure accuracy:

$$RPE = \frac{|T-E|}{T} \times 100$$

T:True abundance **E**: Estimated abundance

Estimated frequency	 Curve for AY.3 linea Curve for AY.14 line Curve for AY.25 line Curve for AY.26 line Curve for B.1.617.2 Reference line(Idea
0.0	20
Estimated frequency	 Curve for AY.3 linea Curve for AY.14 line Curve for AY.25 line Curve for AY.26 line Curve for B.1.617.2 Reference line(Idea
Estir • •	20

AUTHOR: YASH KALIA

SUPERVISOR: JASMIJN BAAIJENS

Y.Kalia@student.tudelft.nl

J.A.Baaijens@tudelft.nl

<u>4. RESULTS</u>

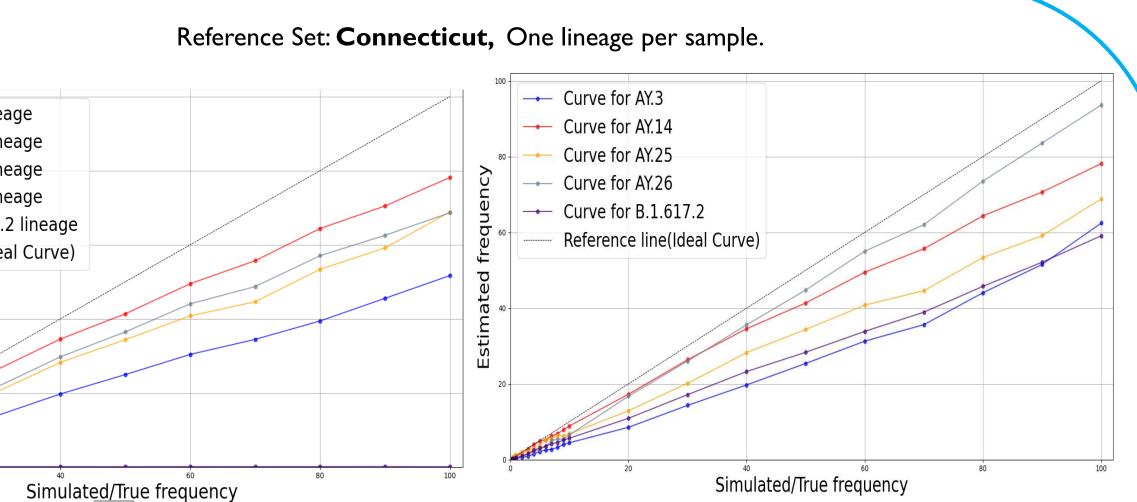


Figure I: High(left) and Low(right) Granularity Results for Delta variant.

Reference Set: US, One lineage per sample.

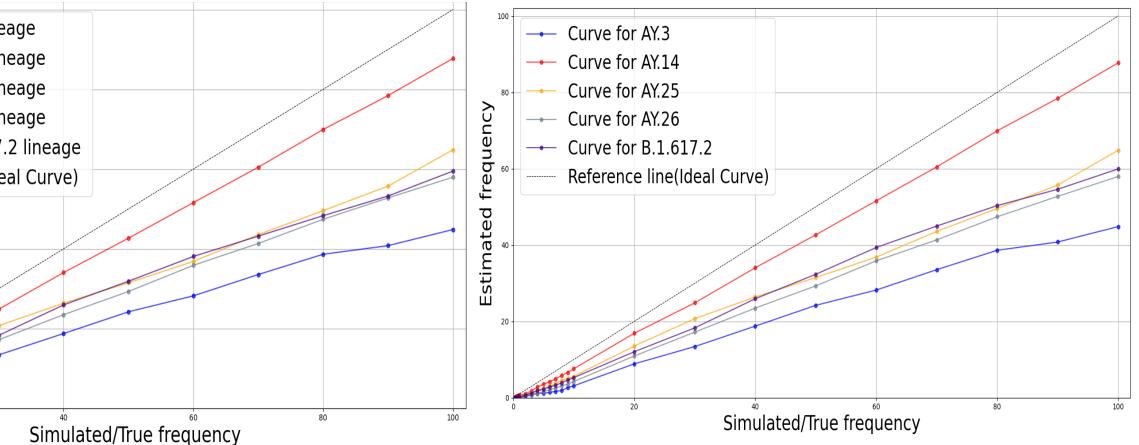
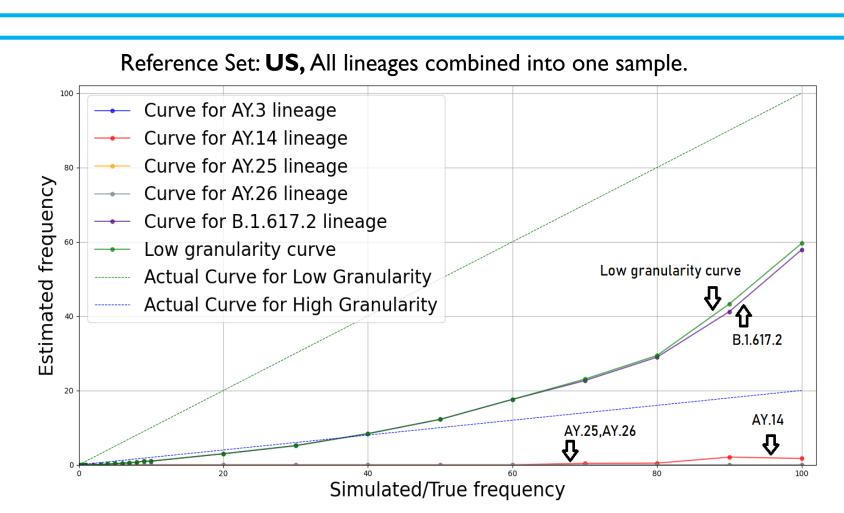
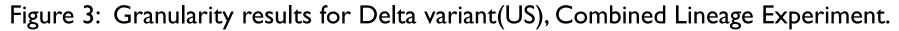




Figure 2: High(left) and Low(right) Granularity Results for Delta variant.

5.ANALYSIS

- US reference set results were more accurate compared to CT due to a more detailed/larger Kallisto index.
- US reference set fixed the misclassification for B.1.617.2.
- Sub-lineage results were more accurate compared to root.
- Results for Delta and Alpha were inaccurate because of the number of lineages & genomes simulated together, except at very high abundances. Results for Mu were best in comparison.

6. CONCLUSION

- Prediction accuracy for LG was consistently at least as high as HG for single lineage experiments(CT and US).
- Single lineage results are more **regular** and **predictable** compared to combined lineage results.
- Pipeline is **not strong** at making predictions for more than 2 lineages combined together, especially for Alpha and Delta.

