Modified GNN-SubNet: leveraging local versus global Graph Neural Network explanations for disease subnetwork detection

Student: Elena-Oana Milchi (E.O.Milchi@student.tudelft.nl) Thesis committee: Dr. Megha Khosla, Dr. Jana Weber, Dr. Thomas Abeel

Background

- Protein Interaction aids in locomotion and metabolism regulation
- Malformed proteins can generate disease phenotypes Analyze PPI Networks to identify disease subnetworks

• GNNs

- Machine learning tools useful in bioinformatics
- Operate on graph data (node features)
- Inherently black-box

Source: Sanchez-Lengeling, Reif, Pearce, and Wiltschko (2021)

• Explainers for GNNs

- Provide insight on GNNs' predictions:
- How do certain inputs and outputs correspond?
- How is data represented in the network?
- Local explanation: explain how a GNN makes a prediction for a single dataset entry
- **Global explanation:** explain a GNN's predictions for an entire dataset

• GNN-SubNet

- Uses a GNN explainer for disease subnetwork detection
- Uses a mask for all nodes optimized with gradient descent => global explanation
- Repeatedly samples input graphs from the dataset

GNN-SubNet optimizes a node mask (right) which explains for each node how *important it was in the GNN's predictions of the input graphs (left)*

Research Questions

How does the global-level explanation of a GNN obtained by GNN-SubNet compare with an aggregation of local-level explanations of the same model?

1. How can GNN-SubNet be modified to aggregate local-level explanations of a GNN into a global explanation? 2. How does GNN-Subnet compare with its proposed modification in terms of the metrics devised to evaluate explainers for GNNs?

Methods

RQ1: Modifying GNN-Subnet

- GNN-SubNet optimizes a node mask via Gradient Descent:
- The optimization is done on a restricted sample of the input data (reinitialized every 50 epochs)
- To obtain a local explanation remove the sampling scheme
- Then aggregate all local explanations (node masks) per node
 - Mean Aggregation: takes the mean value
 - Median Aggregation: takes the median value

RQ2: Comparing GNN-SubNet with its modifications

- Input data: Protein methylation and mRNA features from The Cancer Genome Atlas (KIRC)
- Experimental pipeline:
- Run GNN-SubNet and its two modifications on the TCGA dataset 10 times per explainer
 - Obtain most relevant disease subnetworks
- Obtain metric scores:
 - **RDT-Fidelity**: can explanations approximate the model's behavior?
 - **Sparsity**: Are the explanations non trivial?
 - Validity+: does averaging the "important" features change the GNN's prediction?
 - Validity-: does averaging the "unimportant" features maintain the GNN's prediction?

Results

RQ1: Disease subnetwork analysis

- Most frequent among all explainers
- High expression in cancer tumours:
- NOP14
- NOP58

RQ2: Comparison in terms of metrics

Explainer	GNN	Mean	Mean	Thres.	Mean	Mean
	Acc.	Fidelity	Sparsity	Value	Validity+	Validity-
GNN-SubNet	75.0	0.855625	0.042664	30.0	0.25875	0.73625
GIVIT-Subivet	10.0	0.000020	0.042004	50.0	0.47125	0.85375
Mean	75.75	0.861375	0.019166	30.0	0.32375	0.8150
Aggregation				50.0	0.39750	0.8725
Median	73.0	0 837375	0.038665	30.0	0.39375	0.80750
Aggregation	15.0	0.001010	0.050005	50.0	0.45500	0.83375

While GNN-SubNet optimizes a node feature mask for all dataset entries, the proposed modification does this for each graph input

A visualization of the TCGA dataset. On the left, the distribution of node feature values for the first 10 proteins. On the right, a visualization of (part of) the PPI where one node is a protein and one edge is a protein interaction

- Reported by authors of GNN-SubNet
- Found only by Mean & Median Aggregation in this study
- Relevant for cancer detection: HOXB13 (& interaction with MEIS1, MEIS2)
- EGR2 (for RCC)

RDT Fidelity

- Mean Aggregation performs best
- Median Aggregation performs worst

Sparsity:

- All explainers obtain dense explanations
- Mean Aggregation performs the worst
- Median Aggregation performs better, but not as good as GNN-SubNet

	•	Va •
	_in	ni
•	Gl de	NN esc T p
		Density
		Density
		Density
	A	vis

Conclusions

alidity+ and Validity-

- No clear winner in terms of Validity+
- Mean Aggregation performs best in terms of
- Validity-

tations

N-SubNet randomly initializes the node mask in gradient cent

This leads to different optimizations and different results per run

Sualization of the metric scores for all explainers over ten runs. Note the skewed distributions and high variance.

 GNN-SubNet and its two modifications identify subnetworks associated with cancer

 Mean Aggregation shows best RDT Fidelity and Validity-• No explainer obtains sparse explanations

• Further research into explainable graph models for disease subnetwork detection is needed

References

[1] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. Wiltschko, "A Gentle Introduction to Graph Neural Networks", Distill, vol. 6, no. 8, 10.23915/distill.00033, Aug. 2021, issn: 2476-0757. doi: 10.23915/distill.00033.

[2] B. Pfeifer, A. Saranti, and A. Holzinger, "GNN-SubNet: Disease subnetwork detection with explainable graph neural networks", Bioinformatics, vol. 38, no. Supplement_2, pp. ii120–ii126, Sep. 2022, issn: 1367-4803, 1367-4811. doi:

10.1093/bioinformatics/btac478.