
Efficiently Optimizing Hyperparameters for the Gumtree Hybrid Code Differencing Algorithm

 Results

 Conclusions

Alexander Nitters | Supervisors: Quentin Le Dilavrec, Carolin Brandt

3 Research question1

 Background
Gumtree is a state-of-the-art algorithm for AST differencing. It consists of three
phases, with the third called recovery. Three main algorithms exist for this part:
- Optimal: finds all mappings, but has a complexity of O(n³);
- Simple: uses heuristics to find good results faster;
- Hybrid: switches between Optimal and Simple depending on the size of the tree.

The Gumtree algorithm has 5 hyperparameters:

 Introduction

2

4 Contributions

6

7

See paper for references

If quick runtimes are needed, for example for integration in developer tools, we recommend
using the Gumtree Simple algorithm, which has no hyperparameters and generally produces
good results.
If a shorter edit script is more important, for example for research into software evolution,
we recommend using local optimization with the Hybrid bottom-up matcher. Only the
max_size hyperparameter is worth optimizing, to improve efficiency.

In order to analyze software evolution, it is useful to compare two Abstract Syntax
Trees (ASTs), which is the purpose of diff algorithms such as Gumtree.
HyperAST focuses on improving scalability of Gumtree, which is a common issue
with AST diff algorithms and can prevent the analysis of large codebases.

public void Foo() {
 func();
 print("hello");
}

public void Foo() {
 print("Hello");
 print("world!");
 func();
}

Abstract
Syntax
Tree

🠕

🠕

Code
Effect of hyperparameters

max_sizebottom-up_matcher

min_priority
We found worse output quality with values
other than the default (1), with no major
performance improvement.

Hyperparameter tuning approach
Global optimization is unfeasible on available hardware since runtime exceeds practical limits.
Local optimization is possible on smaller repositories, and can be used to find values of
max_size for the Hybrid variant that give a better edit script than Simple on a single commit.
On the gson repository, TPE with 10 evaluations found improvements in 2 out of 17 cases,
with a median runtime of 283.1s.

HyperDiff optimizations
We observed a decrease in performance
between 70% and 355%, likely due to an
implementation bug.

Greedy Simple Hybrid Hybrid
 1000 50 1000

The Simple variant generally performs
better, but the improvement is less marked
with larger ASTs and few changes. Hybrid is
10 to 70% slower than Greedy.
Hybrid also often produces better outputs.

Computation time increases with max_size,
but the difference is less marked with larger
ASTs and few changes.
We found no pattern between max_size
and edit script quality.

Gain
p-value
Mean

🠕
Runtime
(s)

 0 50 100 200 500 1000
(Simple) (Default)

Gain
p-value
Mean

🠕
Runtime
(s)

5 Methodology

Runtimes for different variants with 3.00M to 7.15M nodes and 10 to 1000 changes Runtimes for values of max_size with 1.00M to 2.83M nodes and 10 to 1000 changes

Porting Gumtree Hybrid to HyperAST
From the reference Gumtree implementation in Java to
HyperAST in Rust. The output of both was compared to test
the correctness of the implementation.

Adapting HyperDiff optimizations
Making the algorithm lazy in order to delay and possibly skip
expensive decompression operations on certain subtrees.

Local hyperparameter optimization for HyperAST
Using the rust-tpe library, first following the DAT approach and
then optimizing only the max_size hyperparameter.

The Diff Auto Tuning approach optimizes these hyperparameters, either on a large
dataset (global tuning) or for a single case (local tuning), using either grid search
or TPE via the HyperOpt and Optuna libraries.

We mainly used benchmarking, for which we measure both
performance and output quality.

Performance: We measured the execution time of the
bottom-up matching phase only for each pair of commits, and
used Mann-Whitney U-tests for statistical analysis since the
benchmark results are not normally distributed.

Output quality: We used the length of an edit script, which is
a commonly accepted proxy for its quality.

We used the dataset from the HyperAST evaluation, with 18
popular large Java repositories. The 3 largest repositories
were excluded to allow for reasonable computation times on
available hardware.
We also used the Defects4j file pair dataset for output equality
tests and smaller benchmarks.

How can we optimize the hyperparameters of
the Gumtree Hybrid algorithm to enable efficient
and accurate differencing on very large ASTs?

