
Readability -
Driven Test
Selection
Poor software quality in the U.S. cost $2.41 trillion
in 2022 [1], underscoring the need for better
practices. Although writing tests improves the
code quality [2], developers often neglect writing
tests. Existing tools generate tests automatically
but struggle with readability.

This research aims to enhance readability by
creating a quantifiable metric, using Natural
Language Processing (NLP), readability factors and
Large Language Models (LLMs) to automate the
evaluation process.

To evaluate code readability, we focused on two different aspects: specific aspects and general aspects. For these evaluations,
we developed prompts that allowed a LLM to score the code.

Feature Selection
Specific Aspects: These include ranking of identifiers, test names, and comments.
General Aspects: These include ranking of conciseness, completeness, and naturalness.

We created three types of prompts to guide the LLM in scoring:
Baseline Prompt: This prompt asks the LLM to rank the code without any guidelines, see Figure 2.
Simple Prompt: This prompt provides a scoring scale from 1 to 5 and explains the criteria for each score, see Figure 3.
Few-Shot Prompt: This prompt not only provides the scoring scale but also includes examples of good and bad code, explaining
how to rate them.

03 Implementation

Fig 2, Baseline Prompt

Fig 3, Simple PromptEvoSuite

Fig 1, Motivating Example

Research Question: How can LLMs be utilized to

assign readability scores and rank automatically

generated unit tests based on their readability?

Subquestions:

SQ1: How can existing readability metrics be adapted

to develop an LLM-based algorithm for evaluating unit

test code?

SQ2: How accurately can LLMs assess the readability

of unit tests compared to human evaluations?

How does this research contribute to existing

research? This research contributes to the existing

literature by introducing an approach to improving the

readability of automatically generated tests by

developing and validating a readability metric, it

bridges the gap between high test coverage and low

comprehensibility.

01 Research Question
Objective: Compare human and LLM code readability

scores to evaluate alignment and accuracy, specifically

focusing on how humans rate the readability of specific

and general aspects of code snippets.

User Evaluations:

Participants: 11 CS students (8 BSc, 3 MSc) from TU

Delft.

Experience: 4 with 0-1 years, 1 with 1-3 years, 6 with

3-5 years of Java testing.

Procedure:

Evaluate 10 code snippets (3 from EvoSuite, 3

from UTGen, 4 from public repositories).

Provide overall readability scores (1-5) and

specific and general aspect ratings.

Rank importance of aspects.

Result:

Table of readability scores for specific and general

aspects of the code, see Figure 6.

04 User Evaluation

[1] Consortium for Information & Software Quality (CISQ). The Cost of Poor Quality Software in the US: A 2022 Report. Accessed: 2023-04-22. 2022. url: https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report
[2] L. Crispin. “Driving Software Quality: How Test-Driven Development Impacts Software Quality”. In: IEEE Software 23 (2006). doi: 10.1109/MS.2006.157
[3]E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling readability to improve unit tests,” Aug. 2015, doi: https://doi.org 10.1145/2786805.2786838.
[4] E. Daka "Improving Readability of Automatically Generated Unit Tests", 2015
[5] D. Winkler, P. Urbanke and R. Ramler, "What Do We Know About Readability of Test Code? - A Systematic Mapping Study," 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI,
USA, 2022, pp. 1167-1174, doi: 10.1109/SANER53432.2022.00135.
[6] Giovanni Grano, Simone Scalabrino, H. Gall, and R. Oliveto. An empirical investigation on the readability of manual and generated test cases. 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC), pages 348–3483, 2018.
[7] Paper has not yet been published

References

Amir Deljouyi,

Andy Zaidman

Supervisor

Technical University Delft, CSE3000

Affiliations
Ismaël Zaidi

Authors

Automatic test generation tools have become increasingly sophisticated. However, a significant issue with these tools is the
readability of the generated tests. The primary reason is that the generated identifiers, test names, and associated data are not
based on the context, making them difficult to interpret [6]. Existing readability metrics focus primarily on the structural aspects
of the code, such as line length, number of assertions, and identifier length, without considering the contextual relevance [3], [4],
[5]. As a result, tests like the one shown in Figure 1 may receive high readability scores despite being hard to understand. Context is
crucial for true readability. Large Language Models (LLMs) have the capability to analyze and understand the context of code.
Leveraging LLMs, we can enhance the evaluation of code readability by incorporating contextual understanding.

02 Background

This study demonstrated that LLMs, especially when

using simple prompts with OpenAI’s GPT models, can

effectively evaluate and rank the readability of

automatically generated unit tests. The strong alignment

between LLM scores and human judgments highlights

the potential of LLMs in this domain, showing promise for

future research to further refine and expand their

applications.

06 Conclusion

SQ1: LLM-based Algorithm for Scoring Readability

See Figure 4

SQ2: LLM Evaluations vs. Human Evaluations

Results Summary:

Specific Aspects: GPT-4 Turbo Simple Prompt model

performed best with an MAE (Mean Absolute Error) of

0.3754, RMSE (Root Mean Squared Error) of 0.4607,

and correlation of 0.7632 (see Figure 5)

General Aspects: GPT-3.5 Simple Prompt model

performed best with an MAE of 0.2886, RMSE of

0.3583, and correlation of 0.8021.

Baseline Models: Codellama Baseline had the best

performance with an MAE of 0.4420, RMSE of 0.5705,

and correlation of 0.6089.

The high correlation between LLM and human evaluations

underscores the reliability of our LLM-based readability scoring,

demonstrating that LLMs can effectively replicate human

judgments in assessing test case readability.

05 Results

Future Work:

Expand to Other Test Types: Apply the readability

evaluation approach to other types of tests and

programming languages.

1.

Broader Dataset and LLM Configurations: Use a

wider range of datasets and LLM configurations to

enhance generalizability.

2.

Integration into Test Generation Systems: Explore

integrating LLM-based readability rankings into

automated test generation systems.

3.

Adjusting Metric Weights: Investigate using

different weights for readability metrics to tailor

assessments better.

4.

07 Future Work

Fig 5, Specific Aspect Boxplot

Fig 4, EvoSuite vs UTGen

Fig 6, User Evaluation Results

