Finding Shortcuts to a black-box model using Frequent Sequence Mining

Can Frequent Sequence Mining help find short-cuts for a complex black-box model?

BACKGROUND

Deep-learning (DL) model -explain. Various techniques have been proposed to use local explanations for the behaviour of DL models, but little attention has been paid to global explanations.

Frequent sequence mining generalizes connections between a model's input and output, generating rules to global explanations for the model.

Our research question: can frequent sequence mining find short-cuts to a complex black-box model?

METHODOLOGY

The main approach is to make shortcuts for

- state-of-the-art prediction model ExPred [1],
- which is trained on FEVER [2] for fact-checking,
- using DESQ [3] as a Frequent Sequence Mining tool

Figure 1: rule mining process on an example claim from FEVER

Main metrics for the assessment of rules:

Support, a measure of the coverage of a rule.

 $Conf(A \rightarrow B) = P(B|A)$

 Attack success rate, a measure of the succes of using rules in adversarial prompts for attacking the model. $Success = \frac{successful examples}{successful examples}$ total examples

RESULTS

The patterns found in FEVER were visualised into the three categories of Figure 2. As shown, adverbs and adjectives can be short-cuts to the model refuting a claim. Conversely, existential clauses make the model support a claim. Most sequence patterns are found in the neutral set, which reveal the focus of the training dataset, as well as trivial language building blocks as illustrated in Table 1.

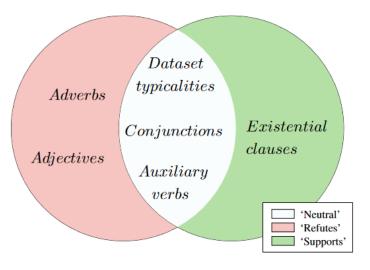


Figure 2: Venn-diagram depicting part-of-speech categories of patterns in FEVER[2].

The strongest rules in FEVER succesfully create shortcuts for the ExPred model as seen in Table 2.

$s \in$ 'Refutes'		$s \in$ 'Neutral'		$s \in$ 'Supports'		
s	Supp(s)	s	Supp(s)	s	Supp(s)	
refused	0.36%	and	78%	acted	0.67%	
yet	0.35%	the	70%	contains	0.29%	
exclusively	0.31%	is	58%	birth	0.29%	
unable	0.19%	a	57%	helped	0.05%	

Table 1: selection from each class of the four most frequent singleitem sequence patterns in FEVER[2].

> Delft University of

Technology

Supervisors Lijun Lyu, Lorenzo Corti

DISCUSSION

Our results expose potential vulnerabilities in ExPred, and we show how the rules can be used for risk assessment. However, since the adversarial prompts were manually forged, the success-rates might be higher using automation.

8	\rightarrow	r(s)	FEVER	ExPred	$Success(\bar{s})$
is incapable of being	\rightarrow	Refutes	100%	94%	78%
has only ever been	\rightarrow	Refutes	100%	99%	62%
does not have	\rightarrow	Refutes	100%	85%	83%
is exclusively	\rightarrow	Refutes	100%	99%	60%
is not a(n)	\rightarrow	Refutes	100%	100%	74%
has yet to	\rightarrow	Refutes	100%	100%	90%
is only a(n)	\rightarrow	Refutes	100%	99%	77%
was unable to	\rightarrow	Refutes	100%	95%	76%
was incapable of	\rightarrow	Refutes	100%	97%	89%
There is a	\rightarrow	Supports	100%	90%	89%

Table 2: selection of the 10 strongest rules and their success as adversarial attacks to the model.

CONCLUSIONS

Main findings:

- The ExPred model relies on shortcuts when making predictions.
- The rules can be a risk assessment tool for DL models using counterfactual attacks.

Future work:

- Assessment of a larger population of shortcuts
- Application to other datasets and models
- Extend and automate adversarial prompt attacks

REFERENCES

[1] Zijian Zhang, Koustav Rudra, and Avishek Anand. (2021) "Explain and Predict, and then Predict Again". [2] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. (2018). "FEVER: a large scale dataset for Fact Extraction and VERification". [3] Kaustubh Beedkar and Rainer Gemulla. (2016). "DESQ: Frequent Sequence Mining with Subsequence Constraints"

