LRFP : Extending local routing protocols in layer 2 networks with a secure fee model **Tu**Delft

Oliver Neut, Dr. Stefanie Roos, Oguzhan Ersoy o.l.c.neut@student.tudelft.nl

1 Background:

- Blockchain protocols lack in scalability
- Off-chain payment channel networks (PCNs) solve this problem
- Payment splitting across nodes is possible using local routing protocols^[1]
- Fees are used to incentivize intermediaries to forward payments across the network

2 Main question:

• A solution to integrate fees in a PCN that uses payment splitting, while maintaining the security guarantees of such a PCN, is needed.

3 Research Method:

- 1. Read how payment splitting protocols work.
- 2. Different fee models were researched.
- **3.** Different security properties that are needed for this protocol were concluded.
- Verification that fee model adheres to security guarantees with help of cryptographic proofs.

<u>Security properties</u>^[1]:

- Termination : protocol terminates in finitely many rounds
- 2. Balance neutrality : bounded loss for the sender and intermediaries cannot lose coins
- Atomicity : Either the transaction succeeds or it doesn't occur at all.
- **4. Correctness :** if all parties are honest and the capacities are sufficient, then the transaction occurs.

These properties change slightly due to fee integration

r : total payment amount :_{max} : maximal fee amount sender is willing to pay '_I : base fee of intermediary **I**

: receiver ; S : send

<u>Proposed fee model:</u> Maximal fee^[2]

Local routing : each intermediary chooses how to route payment

- 1. S sends v + f_{max} to R *
- 2. Intermediaries ${\bf I}$ claim base fee ${\bf r_I}$ and send ${\bf v}$ + ${\bf f'}$ ${\bf r_I}$
- 3. Once at least \boldsymbol{v} coins arrived at $\boldsymbol{R},~\boldsymbol{R}$ unlocks conditional payments

S sends 10 coins to R:

v= 10 ; \mathbf{f}_{max} = 1 ; \mathbf{r}_{A} = 0.5 ; \mathbf{r}_{B} = 0.5

 $\begin{array}{l} \textbf{Route}_{g} \text{ algorithm splits payment in } k \text{ payments of } \\ \text{value } v_{j} \text{ and } f_{j} \quad (\sum_{j \in [k]} v_{j} = v \text{ , } \sum_{j \in [k]} f_{j} = f_{max}) \end{array}$

Figure 2: Example of the fee method

4 Conclusion:

- security properties are maintained
- intermediaries in network receive fees for forwarding
- room for improvement

References:

[1]: L Eckey, S Faust, K Hostáková, S Roos: Splitting Payments Locally While Routing Interdimensionally
[2]: Y. van Engelshoven, S. Roos. The Merchant: Avoiding Payment Channel Depletion through Incentives