META-LEARNING THE BEST CACHING EXPERT

Maik de Vries M.J.A.deVries-1@student.tudelft.nl

[0]

In the field of computer science, few problems are as
common as the . A cache has as its main
goal to provide fast access to a size-limited subset of some
library. The problem arises when it comes to deciding what
is to be kept and what is to be removed from such a cache.

Over the years, various have been
proposed, each with its strengths and weaknesses. Their
main limitation is the need to know certain properties of the
request pattern upfront in deciding the most suitable policy.

In recent years, the problem has been approached anew
from an setting [1]. This class of
algorithms continuously adapt and learns the optimal
decision policy based on the success of their previous
decisions, avoiding the need for upfront knowledge.

[1]

These algorithms guarantee an optimal caching policy for
any arbitrary request pattern [1]. Their performance is
primarily affected by the tuning of their hyperparameters
(e.g. learning rate), which is done under the assumption of
adversarial conditions. Unfortunately, it remains

Therefore, the question remains: is there an effective way
to learn the optimal tuning of such hyperparameters to
derive the best caching policy?

REFERENCES:

[2] GOALS

« Simulate the Online Gradient Ascent (OGA) [1] algorithm
« Study the effect of learning rates on cache performance

- Simulate the Exponentiated Gradient (EG) [2] algorithm
« Use EG as meta-learner which uses OGA as experts

[3] SYSTEM MODEL

Cache Weights Request Utility
Y €Y w; € RY T € X fi (yz)

Y
Y
Y

——————————— me slot St Set=tmte et

Figure 1: A cache configuration U: is chosen; an adversary reveals weights w, ; an
adversary reveals request r; ; the achieved utility f; (y;) is computed; and the next
time slot t + 1 is processed.

The objective is to minimise regret of cache configuration ¥
compared to the best static configuration in hindsight y™:

i i
Ry = Z fe (y") — Z fe (ye)
t=1 t=1

Caching expert | fe (ys.¢)

e
8 e K ‘ I = Record iy
Expert weights : { Utilities Calculate

my € M uf,vke K My

Caching expert | fe (yy.¢)
vy€K

T R R e e e e e e

Figure 2: A caching expert 3 is randomly selected based on expert probability vector
my ; all caching experts process request I; and output their obtained utilities f; (yy.;);
the meta-learner records the utility of the selected expert u‘;'f . the expert probability
vector 11y, is computed; and the next time slot t + 1 is processed.

I U D e I ft [1] G. PASCHOS, A. DESTOUNIS, L. VIGNERI, G. IOSIFIDIS, "LEARNING TO CACHE WITH NO REGRETS", IEEE INFOCOM, 2019

[2] F. ORABONA, "A MODERN INTRODUCTION TO ONLINE LEARNING", ARXIV:1912.13213, 2023

Average utility

CSE3000 - RESEARCH PROJECT

PROFESSOR: DR. G. IOSIFIDIS
SUPERVISOR: NARAM MHAISEN

[4]
TABLE 1
Performance relative to best-performing caching expert (%)

Time slot

¢ (0:25 < 102 (5 < DT < il 02 B 2. (02

0.6 3.49 0.09 —0.98 —0.55
0.8 3.06 0.46 —0.54 —0.36
1.0 3.31 0.94 —0.05 —0.25

Performance comparison between meta-learner o™ and the best-performing
caching expert at various time slots, expressed as a percentage (%) for each
Zipfian distributed request model with parameter ¢.

9.8, 1.0-
0.7 S ——
7~ 0.8
0.6 jr-~~ - o
0.5 | o 0.6
0.4/ @ \
0GA [0.05] s \
0.3 0GA [0.10] @ 0.4 \.
—— 0GA [0.30) >3 0GA [0.05)
0.2 0GA [1.00] 0.2/ 0GA [0.10]
0.1 BSCH : —— 0GA [0.30)
o . 0GA [1.00]
0.0 — . : . 9.0~ : .
0.0 0.5 1.0 1.5 2.9 0.0 0.5 1.0 1.5 2.0

x10°

Time slot Time slot

Figure 3: Zipfian distributed request pattern (¢ = 1.0, N = 2500, C = 250);
(a) average utility over time of meta-learner, BSCH and various OGA experts; (b)
progression of meta-learner expert weights over time

[5]

The online meta-learner caching policy
previously of related works.
Furthermore, a in performance is
achieved when the individual caching experts’ relative
performance varies over time.

upon the



