
How Effective is GPT-4o at Generating Test Assertions?

1. Background 2. Approach 3. Study Design

4. Results

5. Conclusions and Future Work

Figure 3: A method with a detected bug

Software testing is crucial but requires a lot of
time and effort. It heavily relies on the quality of
the assertions.

Search-Based Software Testing (SBST)
• Research field that focuses on automating test

creation
• Limitations: poor test case readability and

inability to distinguish correct program behavior
from incorrect

Large Language Models (LLMs)
• Great at working with natural language
• There is already some research on their abilities

to generate tests
• Limitations: non-stochastic and prone to code

hallucinations

Mutation testing
• One of the most insightful strategies for

evaluating the quality of a test
• Creates mutants by modifying the code under

test and then checks if any of the assertions
detect them

200 total generated classes:
• 38 build errors
• 1580 tests after removing every failing

assertion
• In total, 71% of the mutants killed
• In terms of readability, the tests seemed

to have human-like style

Out of 20 classes, GPT-4o performed
significantly (p <= 0.05) better in 3 of the
cases. Nevertheless, EvoSuite outperformed
it in 9 of the cases.

Manually fixing the failing assertions:
• In total, 225 test methods rewritten
• The mutation score increased to 75%
• Mean mutation score was 81.3% (only 0.08%

smaller than EvoSuite)

EvoSuite still had statistically better
results in 5 of the cases compared to the 3
cases where GPT-4o surpassed it.

Figure 2 shows the amount of improvement in
mutation score after fixing the tests.

Interestingly, a small fraction of the
assertions that were failing appeared to be
correct. Deeper examinations revealed that
some of the assertions managed to detect
bugs in the source code.

For example, Figure 3 contains a method
from one of the classes. Calling it with a
null value causes an exception to be thrown.

GPT-4o managed to find the bug in 4 out
of 10 test suites for this class.

We identified two possible approaches:
1. Static – prompting the LLM once
2. Dynamic – asking the model to further

improve the results with more prompts.

We focus only on the static approach.

For each of the classes, GPT-4o
generated tests. The results were compared
with EvoSuite, a SBST tool.

Figure 1: A schematic of our approach

Some of the tests were failing. Thus, we
opted for two rounds of comparison:
1. After removing the failing assertions
2. After fixing every assertion manually

To measure the quality of the tests,
mutation score was used.

The research question is: how effective is
GPT-4o at generating test assertions with
regards to mutation score?

For statistical comparison with EvoSuite we
used Wilcoxon rank-sum test together with
Vargha-Delaney effect size.

For evaluation we picked 20 Java classes
from the SF110 using the following criteria:

1. Must not depend on more than one other
class within the project.

2. Must have a cyclomatic complexity of at
least 5.

3. The code should contain more complicated
logic than basic getters and setters.

Afterwards:
• For each of the classes we generated 10

test classes.
• Then we used Pitest to evaluate their

mutation score.
• Compared these scores with the ones

obtained by running EvoSuite 6 times.

public static boolean matchTemplateEnd(String
text)
{

return text != null &&
(text.indexOf("@template_end") != -1)

|| (text.indexOf("@tend") != -1);
}

Conclusions:
1. Our approach performed slightly worse than

EvoSuite in terms of mutation score
2. It improved upon some of the weaknesses of

SBST
3. Lastly, GPT-4o is a viable option for

developers to use for testing

In the future:
• Analyse different LLMs and languages
• Verify the findings on different datasets
• Try out the dynamic approach

Author: Adomas Bagdonas (abagdonas@tudelft.nl)

Figure 2: Improvements in mutation score

Supervisor: Mitchell Olsthoorn
Responsible professor: Annibale Panichella

	Default Section
	Slide 1

