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Figure 3: A method with a detected bug

Software testing is crucial but requires a lot of
time and effort. It heavily relies on the quality of
the assertions.

Search-Based Software Testing (SBST)
• Research field that focuses on automating test 

creation
• Limitations: poor test case readability and 

inability to distinguish correct program behavior 
from incorrect

Large Language Models (LLMs)
• Great at working with natural language
• There is already some research on their abilities

to generate tests
• Limitations: non-stochastic and prone to code

hallucinations

Mutation testing
• One of the most insightful strategies for

evaluating the quality of a test
• Creates mutants by modifying the code under

test and then checks if any of the assertions
detect them

200 total generated classes:
• 38 build errors
• 1580 tests after removing every failing

assertion
• In total, 71% of the mutants killed
• In terms of readability, the tests seemed

to have human-like style

Out of 20 classes, GPT-4o performed
significantly (p <= 0.05) better in 3 of the
cases. Nevertheless, EvoSuite outperformed
it in 9 of the cases.

Manually fixing the failing assertions:
• In total, 225 test methods rewritten
• The mutation score increased to 75%
• Mean mutation score was 81.3% (only 0.08%

smaller than EvoSuite)

EvoSuite still had statistically better
results in 5 of the cases compared to the 3
cases where GPT-4o surpassed it.

Figure 2 shows the amount of improvement in
mutation score after fixing the tests.

Interestingly, a small fraction of the
assertions that were failing appeared to be
correct. Deeper examinations revealed that
some of the assertions managed to detect
bugs in the source code.

For example, Figure 3 contains a method
from one of the classes. Calling it with a
null value causes an exception to be thrown.

GPT-4o managed to find the bug in 4 out
of 10 test suites for this class.

We identified two possible approaches:
1. Static – prompting the LLM once
2. Dynamic – asking the model to further 

improve the results with more prompts. 

We focus only on the static approach.

For each of the classes, GPT-4o
generated tests. The results were compared 
with EvoSuite, a SBST tool.

Figure 1: A schematic of our approach

Some of the tests were failing. Thus, we 
opted for two rounds of comparison:
1. After removing the failing assertions
2. After fixing every assertion manually

To measure the quality of the tests, 
mutation score was used.

The research question is: how effective is 
GPT-4o at generating test assertions with 
regards to mutation score?

For statistical comparison with EvoSuite we 
used Wilcoxon rank-sum test together with 
Vargha-Delaney effect size.

For evaluation we picked 20 Java classes 
from the SF110 using the following criteria:

1. Must not depend on more than one other 
class within the project.

2. Must have a cyclomatic complexity of at 
least 5.

3. The code should contain more complicated 
logic than basic getters and setters.

Afterwards:
• For each of the classes we generated 10

test classes. 
• Then we used Pitest to evaluate their 

mutation score.
• Compared these scores with the ones 

obtained by running EvoSuite 6 times.

public static boolean matchTemplateEnd(String 
text)
{

return text != null && 
(text.indexOf("@template_end") != -1)

|| (text.indexOf("@tend") != -1);
}

Conclusions:
1. Our approach performed slightly worse than 

EvoSuite in terms of mutation score
2. It improved upon some of the weaknesses of 

SBST
3. Lastly, GPT-4o is a viable option for 

developers to use for testing

In the future:
• Analyse different LLMs and languages
• Verify the findings on different datasets
• Try out the dynamic approach
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Figure 2:  Improvements in mutation score
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