
Conclusion

Diversity of operators
Current research which uses evolutionary
algorithms for testing the XRPL Protocol did not
diversify their selection of evolutionary operators.

Concurrency bugs
Testing is difficult because of the distributed nature
of these systems, which causes difficult to detect
concurrency bugs.

Crypto-assets importance
Crypto-assets are becoming more important in the
modern day world with a market capitalization of
2.6 trillion USD in 2021.

Problem

Groot
For each combination of operators,
Groot is used.

1) Random Baseline
2) SBX – Gaussian
3) Laplace - MPTM

● Groot creates an initial population
of 10 test cases (encodings).

● The algorithm runs all test cases
and uses selection and
reproduction to create a new
population.

● Each test case is represented as a
priority list.

● The Rocket Framework runs each
test case two times and checks for
constraint violations.

XRPL
Node

XRPL
Node

XRPL
Node

Rocket
Interceptor

Rocket
Controller

Priority
List

Run
CasesSelection

Crossover Mutation

Groot

Initial
Population

XRPL
Node

XRPL
Node

XRPL
Node

XRPL
Node

Background

Initial Population
An initial population
is created based on
random generation.

Selection
The best specimen
are chosen using a
mathematical
fitness function.

Reproduction
The specimens are
combined using a
crossover and a
mutation operator.

Distributed XRP Network
● All nodes keep track of all transactions.
● Clients can submit transactions to any
node.

● Transactions will be communicated and
validated with the network.

XRPL
Node 1

XRPL
Node 2 XRPL

Node 3

XRPL
Node 4

XRPL
Node 5

Client
1

Client
2

Evolutionary Algorithm

Groot: Impact of Evolutionary Operators in XRPL
Testing using Priority-Based Event Representation

Author:
Bryan Wassenaar (B.J.A.Wassenaar@student.tudelft.nl)
Supervisors:
Burcu Kulahcioglu Özkan, Mitchell Olsthoorn, Annibale Panichella

Evaluation
XRPL Protocol Constraint violations

Termination
All nodes eventually finalize a ledger. This ensures the
network makes progress and can process transactions.

Agreement
All nodes submit the same ledger for the same sequence
number. This ensures no forks occur in the network.

Time-fitness

Test case run time
Long run time occurs when more messages were needed
to reach consensus. This provides opportunities for faults.

Final evaluation factors

Effectiveness
Based on how many generations were able to find
violations during the test.

Efficiency
Based on on the earliest generation that detected any
violations and the number of violations identified within
that generation.

Results
Total amount of runs having violations

Baseline SBX-Gaussian Laplace-MPTM

Failed Agreement 68 69 67

Failed Termination 0 0 0

First generation that found a violation

Baseline SBX-Gaussian Laplace-MPTM

First Violation G2 G1 G2

Failed Agreement 4 3 5

Failed Termination 0 0 0

Effectiveness
all three setups had around the same amount of violations, the
evolutionary algorithms are therefore not more effective than the
random baseline at finding bugs in the XRP Ledger protocol.

Possible reasons:
● Noise in the fitness function causing to much variability.
● Time-fitness does not work well with priority-based event
representation, because priorities don’t cause larger delays.

● Priority-based event representation is not effective in detecting
termination bugs, since they don’t increase delays directly.

Efficiency
The three setups are close to each other in terms of efficiency, but
SBX-Gaussian is slightly slower.

Possible reasons:
● The seeded bug was too easy to find, causing high probability that a
random encoding finds it.

● High mutation probability causes generations to be diverse, but limits
exploitation.

mailto:B.J.A.Wassenaar@student.tudelft.nl

	Page 1

