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1. Introduction

* A lineage is a collection of virus mutants that share

predecessors

* Monitoring existing lineages Is crucial for the efforts

taken to contain the virus

« SARS-CoV-2 lineage abundance quantification
wastewater helps monitoring existing
cases where clinical sequencing is not feasible
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2. Research question

 How does the reference set design affect prediction
accuracy?
* Focus on: How should the geographical region

where the reference sequences are sourced from be
decided?

3. Background

Why does the geographical location matter?

Lineages show different mutations in different

geographical regions:

 Random mutations, can be highly represented in a
given geographical location.

 Immune responses differ among populations, and
change the virus (1] — those differences can be
linked to ancestry [2]

4. Hypothesis

Increased performance due to:

« Within Ilineage variation that becomes
common between test set and reference set

« \Variation specific to lineages could provide
useful variation between different lineages

5. Methods

1. Build reference sets
2. Build test sets containing simulated

wastewater sequencing data
3. Evaluate predictions

Metric (relative prediction error):

|true abundance — estimated abundance]| 10

true abundace

6. Results
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Fig. 2: Interactions between populations
Test set: Cyprus, Europe
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France : No tourists reported [3] , Germany, UK : ~50% of tourism [3]
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Fig. 3: Geographical Proximity
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ig. 4: Ancestry & immune response
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\South Europe: ~67% shared ancestry [4] , East Asia : ~0.01% shared ancestry [4] /
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7. Conclusions

« Continent specific reference sets yield best

results
* Overall interactions of a country could be
considered

* Ancestry does not influence results
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