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Traffic Forecasting: predict future traffic conditions based on historical
data, structure of the network and more.
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Scalability: effectively handle increasing amounts of data without LISUER AR

significant loss of performance or high increases in computational
resources.
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sensors as nodes, and edges as connections between them.
25%, 50%, 75%, 100%
1. Scaling Map 3. Geographical

GNN Scalability problems: GPU memory constraints, reliability issues in e Sampling Effect

subsampling [1].
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Graph Neural Networks (GNNs) in traffic forecasting: represent H =
’ ' Proportions (4
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Figure 3: Overview of the methodology used in this study. The model is the Decoupled Dynamic Spatio-
Temporal Graph Neural Network (D2STGNN) [2@
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2. Problem Description
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Given a set of historical traffic speed observations from the past Tj, time
steps X = [Xe—r41, -» Xe-1,X¢] € RTN with X, € RN at timestep ¢ over N
sensors in a traffic network G, predict the future traffic speed observations
Y = [Xes1, Xew2, oo, Xear] - Adapted from [2].
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Figure 4: Areas selected for each scenario. The Figure 5: Example of sampling with 25%
areas are non-mutually exclusive (PEMS-BAY). \__proportion in Scenario 2 (PEMS-BAY). - 50 75 50 75
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3. Research Question T, N ,
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How does the accuracy and computational efficiency of Graph Neural MAE = z Z [Yei =Yl  Training Time Per Node = ———————— 6. Limitations & Future Work
Networks in traffic forecasting vary with the size and complexity of road rroEE

networks? Limitations: (i) Geographic and dataset size
. limitations restrict the generalizability of the
7. Conclusions findings. (ii) Results may not fully generalize to
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Future Work: (i) Using larger more diverse
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