

Danae Savvidi

Legistrico Danae Danae Savvidi

Legistrico Danae Savvidi

Legistrico Danae Danae

Supervisor: Elena Condugeti

Scalability of Graph Neural Networks in Traffic Forecasting

Assessing Accuracy and Computational Efficiency in Varying Road Network Sizes and Complexities

1. Introduction

Traffic Forecasting: predict future traffic conditions based on historical data, structure of the network and more.

Scalability: effectively handle increasing amounts of data without significant loss of performance or high increases in computational resources

Graph Neural Networks (GNNs) in traffic forecasting: represent sensors as nodes, and edges as connections between them.

GNN Scalability problems: GPU memory constraints, reliability issues in subsampling [1].

2. Problem Description

Given a set of historical traffic speed observations from the past T_h time steps $\mathcal{X} = [X_{t-T_h+1}, ..., X_{t-1}, X_t] \in \mathbb{R}^{T_h \times N}$ with $X_t \in \mathbb{R}^N$ at timestep t over Nsensors in a traffic network G, predict the future traffic speed observations $y = [X_{t+1}, X_{t+2}, ..., X_{t+T_f}]$. Adapted from [2].

3. Research Question

How does the accuracy and computational efficiency of Graph Neural Networks in traffic forecasting vary with the size and complexity of road networks?

References

[1] W. Jiang and J. Luo, "Graph neural network for traffic forecasting: A survey," Expert Systems with Applications, vol. 207, p. 117921, Nov. 2022. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.

[2] Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao, and C. S. Jensen, "Decoupled dynamic spatial-temporal graph neural network for traffic forecasting," arXiv preprint arXiv:2206.09112, 2022

7. Conclusions

- A Larger graphs result in shorter training times per node with higher GPU utilization and can generally improve accuracy.
- The model maintains robust accuracy with increased graph complexity, though
- Sensor geographic location impacts accuracy but minimally affects computational

datasets. (ii) Exploring other dimensions of

scalability.