
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Aim: verification of Haskell concurrency 

models through Agda2hs.

Haskell: a mainstream strongly typed 

functional language

Agda: a non-mainstream strongly typed, total 

functional language with dependent types

Agda2hs: automatically translates Agda code 

to readable Haskell – combine the best of both 

worlds!

Concurrent Haskell: MVars are used as 

mutually exclusive, mutable shared variables. 

They are ‘boxes’ that may contain a value, that 

can be read from when full, and written to 

when empty.

1. MOTIVATION

• Formal verification. As a dependently typed 

language, Agda allows for formal proofs about program 

correctness. This significantly improves confidence in 

the program.

• Concurrency. Notoriously difficult to test; instead we 

can define essential properties that ensure the 

correctness of our program. These require formal 

proofs.

TU Delft, B.Sc. Thesis in Computer Science & Engineering

Michelle Schifferstein - m.schifferstein@student.tudelft.nl

Supervisors: Jesper Cockx (j.g.h.cockx@tudelft.nl) & Lucas Escot (l.f.b.escot@tudelft.nl)

Practical Verification of Concurrent Haskell Programs

2. METHOD

1. Port Haskell concurrency model to Agda. Check it 

translates to correct Haskell with Agda2hs.

2. Prove correctness of programs with the help of Agda’s

dependent type system – with a focus on the 

occurrence of deadlocks.

5. VERIFICATION

Interesting properties are mostly about specific concurrent 

programs, not about the models. We focus on:

• Absence of deadlocks. There is no program 

configuration in which all processes wait indefinitely for 

each other.

We can use the forced termination of our functions to 

prove whether our programs terminate or not, i.e. whether 

a deadlock occurs.

8. LIMITATIONS

• Agda’s requirements for totality and termination

• Deterministic round robin scheduler

• Assumed correspondence Haskell’s IO with modeled 

IO

10. REFERENCES

[1] K. Claessen, “A poor man’s concurrency monad,” 

Journal of Functional Programming, vol. 9, pp. 313–323, 

1999.

[2] L. Hu, Compiling Concurrency Correctly Verifying 

Software Transactional Memory. PhD thesis, University of 

Nottingham, 6 2012.

[3] W. Swierstra, A functional specification of effects. PhD 

thesis, University of Nottingham, 11 2008.

3. CONCURRENCY MODEL

• Haskell concurrency libraries: low-level 

implementation, difficult to port directly.

• Claessen 1999 [1]: concurrency monad transformer 

that adds a simple form of concurrency to any monad:

Concurrency monad transformer and accompanying Action datatype

Round robin scheduling function for interleaving actions

• Can be used to simulate Haskell MVars

• Combine with pure IO model with memory 

representation [3], so Agda can evaluate the programs

6. DEADLOCK PROOF

We can prove that this program does not terminate 

because it runs out of fuel:

mVarDeadlock : Bool

mVarDeadlock = runIOs (run (do

a <- newEmptyMVar

b <- newEmptyMVar

fork (do

takeMVar a fuel

writeMVar b 1 fuel)

takeMVar b fuel

writeMVar a 2 fuel

) (natToMyNat 100000))

{-# COMPILE AGDA2HS mVarDeadlock #-}

deadlock-proof : mVarDeadlock ≡ False

deadlock-proof = refl

9. FUTURE WORK

• Devising alternatives for round robin scheduler

• Verifying more complex concurrent programs

• Verifying other properties

• Porting a simplified STM model to Agda [2]
4. FROM HASKELL TO AGDA (AND BACK) (1)

Circumvent Haskell’s newtype declarations:

record C (m : Set → Set) (a : Set) : Set where

constructor Conc

field

act : (a → Action m) → Action m

open C public

{-# COMPILE AGDA2HS C #-}

data C m a = Conc{act :: (a -> Action m) -> 
Action m}

Agda2hs

7. RESULTS

• Ported Claessen’s concurrency model to Agda with 

minor adjustments, generated readable Haskell with 

Agda2hs.

• Implemented a model for IO (Swierstra 2008) to enable 

reasoning about concurrent programs in Agda.

• Proven occurrence of deadlocks for simple concurrent 

programs with MVars.

4. FROM HASKELL TO AGDA (AND BACK) (2)

To meet Agda’s termination requirement, add ‘fuel’ to 

enforce termination of non-terminating functions:

round : ⦃ Monad m ⦄ → List (Action m) →

MyNat → m Bool

round [] _ = return True

round xs Zero = return False

round (Stop ∷ xs) (Suc n) = round xs n

round (Atom x ∷ xs) (Suc n) = ...

round (Fork x y ∷ xs) (Suc n) = ...

{-# COMPILE AGDA2HS round #-}

mailto:m.schifferstein@student.tudelft.nl
mailto:j.g.h.cockx@tudelft.nl
mailto:l.f.b.escot@tudelft.nl

