Practical Verification of Concurrent Haskell Programs

Michelle Schifferstein - m.schifferstein@student.tudelft.nl ?
Supervisors: Jesper Cockx (j.g.h.cockx@tudelft.nl) & Lucas Escot (l.f.b.escot@tudelft.nl)

TU Delft, B.Sc. Thesis in Computer Science & Engineering -
(((é
4

3. CONCURRENCY MODEL

4. FROM HASKELL TO AGDA (AND BACK) (2))
"Epository)

To meet Agda’s termination requirement, add ‘fuel’ to
enforce termination of non-terminating functions:

round : { Monad m } » List (Action m) -

» Haskell concurrency libraries: low-level
implementation, difficult to port directly.

* Claessen 1999 [1]: concurrency monad transformer
that adds a simple form of concurrency to any monad:

Aim: verification of Haskell concurrency
models through AgdaZ2hs.

MyNat -» m Bool
Haskell: a mainstream strongly typed

functional language

Agda: a non-mainstream strongly typed, total
functional language with dependent types

Agda2hs: automatically translates Agda code
to readable Haskell — combine the best of both
worlds!

Concurrent Haskell: MVars are used as
mutually exclusive, mutable shared variables.

round [] _ = return True

tyvpe C mo = (o0 — Action m) — Action m
YP () round xs Zero = return False

/. RESULTS

» Ported Claessen’s concurrency model to Agda with
minor adjustments, generated readable Haskell with
Agda2hs.

* Implemented a model for IO (Swierstra 2008) to enable
reasoning about concurrent programs in Agda.

» Proven occurrence of deadlocks for simple concurrent
programs with MVars.

data Action m round (Stop :: xs) (Suc n) = round xs n

= Atom (m (Action m))
| Fork (Action m) (Action m)
| Stop

round (Atom x :: xs) (Suc n) = ...
round (Fork x y :: xs) (Suc n) = ...

{-# COMPILE AGDA2HS round #-}

5. VERIFICATION

Concurrency monad transformer and accompanying Action datatype

Interesting properties are mostly about specific concurrent

round :: Monad m = [Action m] — m () programs, not about the models. We focus on:
They are ‘boxes’ that may contain a value, that round [] — return () - Absence of deadlocks. There is no program
can be read from when full, and written to round (a :as) = case a of configuration in which all processes wait indefinitely for 8. LIMITATIONS
when empty Atom a,, — do d « a, ; round (as —++ [ﬂf]) each other.

« Agda’s requirements for totality and termination
» Deterministic round robin scheduler

* Assumed correspondence Haskell's |O with modeled
1O

We can use the forced termination of our functions to
prove whether our programs terminate or not, i.e. whether
a deadlock occurs.

6. DEADLOCK PROOF

We can prove that this program does not terminate
because it runs out of fuel:

mVarDeadlock : Bool
mVarDeadlock = runIOs (run (do

Fork a; ay — round (as + [ay,as])
Stop — round as

1. MOTIVATION

» Formal verification. As a dependently typed
language, Agda allows for formal proofs about program
correctness. This significantly improves confidence in
the program.

« Concurrency. Notoriously difficult to test; instead we
can define essential properties that ensure the
correctness of our program. These require formal
proofs.

Round robin scheduling function for interleaving actions

« Can be used to simulate Haskell MVars

« Combine with pure IO model with memory
representation [3], so Agda can evaluate the programs

9. FUTURE WORK

» Devising alternatives for round robin scheduler
« Verifying more complex concurrent programs

« Verifying other properties

« Porting a simplified STM model to Agda [2]

10. REFERENCES

[1] K. Claessen, “A poor man’s concurrency monad,”
Journal of Functional Programming, vol. 9, pp. 313-323,
1999.

a <- newEmptyMVar

4. FROM HASKELL TO AGDA (AND BACK) (1)

Circumvent Haskell's newtype declarations:
Set » Set) (a : Set) : Set where
constructor Conc
field
act : (a » Action m) - Action m

b <- newEmptyMvar
fork (do
takeMvar a fuel
writeMVar b 1 fuel)
takeMVar b fuel
writeMVar a 2 fuel
) (natToMyNat 100000))

record C (m :

2. METHOD

1. Port Haskell concurrency model to Agda. Check it ,
open public

translates to correct Haskell with Agda2hs.

2. Prove correctness of programs with the help of Agda’s
dependent type system — with a focus on the
occurrence of deadlocks.

{-# COMPILE AGDA2HS C #-} lAgdazhs

data C m a = Conc{act :: (a -> Action m) ->

Action m}

{-# COMPILE AGDA2HS mVarDeadlock #-}

deadlock-proof : mVarDeadlock = False

deadlock-proof = refl

[2] L. Hu, Compiling Concurrency Correctly Verifying
Software Transactional Memory. PhD thesis, University of
Nottingham, 6 2012.

[3] W. Swierstra, A functional specification of effects. PhD
thesis, University of Nottingham, 11 2008.

mailto:m.schifferstein@student.tudelft.nl
mailto:j.g.h.cockx@tudelft.nl
mailto:l.f.b.escot@tudelft.nl

