
Survey of Type Inference Algorithms for Statically Typed Languages

What?
Type inference in programming
languages refers to automatic type
detection based on surrounding context.

Applies when there is a known
expression with an unknown type
which needs to be determined.

Type Inference Algorithms

Why?

A. Hindley-Milner Based (1978-…)
Algorithm W (Original):

B. Bidirectional Type Checking (1999-…)

Pros:

Cons: 1. Does not allow for more complex
features (i.e. Subtyping, Type
Classes/Ad-Hoc polymorphism,
First-Class Polymorphism…)

1. Simple and efficient

Saulius Jakovonis - s.jakovonis@student.tudelf.nl

Method

References

Goals
Main goal is to produce a survey of the
existing algorithms for type inference for
statically typed languages proposed in
literature. Broken down into the following
subquestions:

1
2

What are the common issues to
implementing type inference?

What are the proposed solutions to
these issues?

3 How do these solutions compare?
Identify advantages and limitations.

4 How were these methods adopted in
practice?

The information is sourced from existing
literature with emphasis on peer
reviewed research papers, but official
documentiation and reputable blog
posts also considered.
Algorithms are compared based on the
evaluations present in the original
research, as well as issues identified by
their successors.

The identified algorithms are
categorized and compared based on
their techniques, limitations and
advantages.

2. Type annotations are never
needed
3. Always produces most
general type for any well-
typed expression

2. Known for poor error message
locality [1]

Pros:
1. More robust & flexible
for complex features

[1] J. Dunfield and N. Krishnaswami, “Bidirectional Typing,” ACM Computing Surveys, vol. 54, pp. 1–38, May 2021.
[2] B. C. Pierce and D. N. Turner, “Local type inference,” ACM Trans. Program. Lang. Syst., vol. 22, no. 1, pp. 1–44, Jan. 2000.
[3] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields, “Practical Type Inference for Arbitrary-Rank Types,” J. Funct. Program., vol. 17, pp. 1–82, Jan. 2007

Cons:
1. Some annotations are
usually needed [2]

2. Better error locality [1] [2] (Some) Bidirectional Algorithms:

2. Scope is restricted to
local expressions [2]

First-Class Polymorphism:
QuickLook (2020)

Colored Local Type
Inference (2001)

Subtyping:
Local Type
Inference (1999)

Example 2: inferring function types in Haskell

:type add
add x y z = (x + y) : z

ghci>
add :: Num a => a -> a -> [a] -> [a]

ghci>

Usually occurs at compile time

for (auto light : scene.lights)
draw(light);

Example 1: using “auto” keyword in C++

Reduces the verbosity of a
programming language - making the
code faster to write.

Reduces the cognitive effort
required to write programs, since
the programmer has to worry less
about what types to use.

Reduces redundant information,
making the code more concise and
easier to read.

Type inference maintains type-
checking even without requiring any
explicit type annotations. As a result it

.. while maintaining type-safety of
statically typed languages

Originally for ML, but appears in many
other languages (e.g. OCaml, Haskell, F#)

One of the first type inference algorithms,
yet popular and influential to this day

Uses Hindley-Milner type system and
Robinson’s unification algorithm
Designed around parametric
polymorphism OutsideIn(X) (2011)

Extensions of
Algorithm W:

Subtyping:

Type Classes & GADTs:

MLsub (2017)
Simple-sub (2020)

Error Localization:

SOLVE (2002)

First-Class Polymorphism:

HMF (2008)
FreezeML (2020)

“Practical Error
Localization” (2015)

MLF (2003)

Algorithm M (1998)

More recent approach to type inference
that has become very popular for new
languages [1]

Combines type-checking and type
inference into one process [2]

In practice used by languages such as
Scala to enable subtyping and Haskell to
enable first-class polymorphism

Allows for more complex language
features to be supported by requiring
type annotations where needed [3]

Supervisors: Jesper Cockx, Bohdan Liesnikov

