Author: Alexandru-Ioan Tabacaru a.i.tabacaru@student.tudelft.nl Supervisor: Adrian Zapletal Responsible Professor: Fernando Kuipers

INTRODUCTION

The Latency Challenge

• Applications like XR, cloud gaming, and teleoperation feel unresponsive if queueing delay exceeds 10 ms.

Limitations of Classic TCP

- **Cubic** fills buffers under bursty load, causing persistent delay [1, 2].
- **BBR** mispredicts capacity when RTT or bandwidth shifts suddenly [3].

What L4S Promises

- Sub-millisecond delay even under jitter or bandwidth changes
- High throughput without bufferbloat
- Fair coexistence between scalable and legacy traffic [4, 5]

RESULTS 5

RQ1-RQ2. Delay & Adaptation

Prague keeps <1 ms delay under jitter and bandwidth shifts. Cubic shows **higher delay** and adapts **slower**.

LIMITATIONS

- Real testbeds are needed to validate these simulations.
- Our ECN-BBRv3 model is a patched approximation.
- Future work should tune AQM parameters and test diverse traffic patterns.

RQ3-RQ4. Fairness

shares fairly with ECN-BBRv3.

Jain's Fairness Index Comparison: RQ3 & RQ4 1.000 1.0 0.820 0.8 0.684 0.678 ndex o 0.635 0.600 Lai 0.2

Figure 4: Jain's Index across traffic mixes with Cubic and ECN-BBRv3.

REFERENCES

Evaluating the Impact of L4S on TCP Performance

RESEARCH OBJECTIVE	4
aim of this project was to evaluate ther L4S can deliver on its promises, g a simulation-based testbed in ns-3. Inddressed these research questions: How does TCP Prague perform under RTT Itter compared to TCP Cubic?	 We TC We 95 fai Ex
hanges in wired and Wi-Fi networks? 5 L4S fair when sharing a bottleneck with legacy TCP? How do scalable CCAs like TCP Prague nd ECN-BBRv3 interact in coexistence? 5 L4S robust to wireless packet loss?	Server

D05

Prague gets 4× more throughput than **Cubic** in shared queues, but

Jim Gettys. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing, 2011.

2. Sangtae Ha et al. Cubic: A New TCP-Friendly High-Speed TCP Variant. ACM SIGCOMM CCR, 2008. 3. Danesh Zeynali et al. Promises and Potential of BBRv3. PAM 2024.

4. Bob Briscoe et al. Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture. RFC 9330, IETF, 2023. 5. Koen De Schepper et al. Dual-Queue Coupled Active Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput (L4S). RFC 9332, IETF, 2023.

$\mathbf{N}_{\mathbf{y}} = \mathbf{M}_{\mathbf{y}} = $			
Prague sees only a 5–8% drop vs. Cubic under random Wi-Fi loss.			
Loss Rate	Prague Mean	Cubic Mean	
	Throughput	Throughput	
1%	34.0 Mb/s	36.1 Mb/s	
5%	32.1 Mb/s	34.6 Mb/s	
10%	29.8 Mb/s	32.4 Mb/s	

Table 1: Mean throughput under Wi-Fi loss for Prague vs Cubic.

6 CONCLUSIONS

- across varied conditions.
- but dominates unfairly in shared queues.

INS-3

METHODOLOGY

/e simulated L4S in ns-3 using DualPI2, **CP Prague**, and **ECN-BBRv3**. /e evaluated **throughput**, mean and 5th-percentile queueing delay, and irness (JFI) using long-lived TCP flows. xperiments are run over **two topologies**: Wired dumbbell

Figure 2: topologies used in the ns-3 simulations.

Loss Sonsitivity

• L4S meets its goals of **low delay and stable throughput**

• Prague outperforms Cubic in both delay and adaptability,

• Scalable flows like ECN-BBRv3 share bandwidth fairly.