
06

01

02

05

04

0503

An agent chooses actions over discrete
time steps, each action having a reward
distribution
The objective is to minimise regret
The key challenge is to balance
exploration and exploitation
Real-life applications often introduce
delays in reward feedback

Results

Introduction

Metric used for comparing the
performance of algorithms:

Methodology

Research Questions

[1] L. Besson, SMPyBandits: an Open-Source Research
Framework for Single and Multi-Players Multi-Arms
Bandits (MAB) Algorithms in Python, Online at:
GitHub . com / SMPyBandits / SMPyBandits, Available:
https://github.com/SMPyBandits/
SMPyBandits/.

[2] Lattimore and C. Szepesvári. Bandit algorithms, pages
102–116. Cambridge University Press, 2020.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The non-stochastic multiarmed bandit problem. SIAM
Journal on Computing,
32(1):48–77, 2002.

[4] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual
bandits with linear payoff functions. In Proceedings of the
Fourteenth International
Conference on Artificial Intelligence and Statistics, pages
208–214. JMLR Workshop and Conference Proceedings,
2011.

[5] C. Vernade, A. Carpentier, T. Lattimore, G. Zappella, B.
Ermis, and
M. Brueckner. Linear bandits with stochastic delayed
feedback. In
International Conference on Machine Learning, pages
9712–9721. PMLR, 2020.

References

Influence of Delay on Contextual
Multi-Armed Bandits

How does delay affect the cumulative
regret of algorithms run in contextual
settings?
How can hyperparameters be chosen to
mitigate this effect?

Author: Dragos-Cristian Arsene<D.C.Arsene-2@student.tudelft.nl>
Supervisor: Dr. Julia Olkhovskaia<I.M.Olkhovskaia@tudelft.nl>

The study discusses how the
probability distribution modelling
delay can be used to calculate an
appropriate window size that
balances cumulative regret and
memory usage.
Results suggest a 70% conversion
rate does not significantly increase
cumulative regret compared to
100%, while decreasing memory
usage.
 It would be valuable to see how
the uncertainty introduced by
delay distribution estimation can
be considered when calculating
the time window size.

Conclusion and
future work

Data is generated artificially and
simulates real-life scenarios. In
particular, the delay has to be
modelled using a discrete
distribution over positive values.

The SMPyBandits module [1] runs
four algorithms: UCB [2], Exp3 [3],
LinUCB [4], and OTFLinUCB [5] for
different hyperparameters and
environments. A run consists of 50
repetitions, after which the results
are averaged and plotted. The time
window size hyperparameter is of
most interest, as it has the biggest
effect on CR

The tables on the left exhibit how OTFLinUCB
performs when run in a delayed setting. The
other three algorithms are used as a
baseline, being run in the same environment
but with no delay.

Fig. 1

Fig. 2

Fig. 1 uses Poisson delays, while Fig. 2
uses Geometric delays.
In Fig. 1, two instances of the OTFLinUCB
algorithm with different time window
sizes (m) are compared against the
baselines, showing that a smaller m
significantly impacts the CR.
In Fig. 2, a bigger difference in time
window sizes produces a much smaller
difference in CR.
Choosing a suitable value for m depends
entirely on the probability distributions
that model delay.

Discussion

To study how delay influences cumulative regret, the rho variable is introduced.

The number of ignored rewards relative to the total number of rewards is
one of the two causes of increased cumulative regret due to delay and the
only cause that can be mitigated by tuning the time window size. It can be
seen in Tables 1 and 2 that this relation is not linear.
Tables 3 and 4 show time window sizes for different conversion rates and
probability distributions.
A conversion rate can result in vastly different time window sizes, depending
on the shape of the probability distribution modelling delay.
Each arm's distribution can differ, requiring a time window size which
ensures all arms’ rewards are observed enough times.
Setting the global window size as the maximum of all arms’ window sizes
ensures no arm has a conversion rate lower than 70%, which minimizes
cumulative regret and optimizes memory usage.

Fig. 3
Fig. 3 shows the cumulative
regrets for conversion rates of
0%, 10%, ... up to 100%

