Developing efficient heuristic approaches to cluster editing, inspired by other clustering problems Angelos Zoumis Supervisor: Dr Emir Demirović

1. Problem Overview

Problem explanation

Clustering attempts to find the minimum number of **edge edits** (additions and removals), in order to transform a graph into a **cluster graph** (graph consisting of disconnected cliques).

Cluster editing visual example

Example of cluster editing transformation. This example requires 3 edits to transform into a cluster graph ("PACE 2021", 2021)

3. Algorithms

Base algorithms used

- K-means algorithm
- Agglomerative hierarchical clustering
- Divisive hierarchical clustering

Demands of the distance metric

The algorithm for measuring distance should return a distance based on the likelihood that two vertices are in the same cluster in the optimal solution

Distance metric

- The final distance metric compares the **closed neighborhood** of the vertices we want to find the distance of.
- The closed neighborhood of a vertex consists of all vertices directly connected through an edge, plus itself

4. Results

Edit difference from exact answerMeanWorst caseK-means3.865%68.75%

492.1%

20.03%

Divisive 23.32% 109.1%

Agglomerative

2. Motivation

- The Cluster editing problem is NP-Hard. Therefore, solving on larger graphs is not possible in a reasonable time.
- The cluster editing problem has many applications, in sectors like biology.
- Using existing algorithms is an easy way to develop a heuristic approach for this problem

5. Conclusions

- Developing efficient heuristic approaches to cluster editing, inspired by other clustering problems is feasible
- In terms of time complexity and accuracy, the k-means based algorithm performed the best