SLAM TO RECONSTRUCT AIRCRAFT ENGINES IN 3D

A PERFORMANCE ANALYSIS USING BORESCOPE VIDEOS

Author: Thomas Markhorst Supervisors: Prof. Dr. Jan van Gemert and Burak Yildiz TU Delft Department of Intelligent Systems Contact: t.c.markhorst@student.tudelft.nl

BACKGROUND

- Model blades for damage assessment & counting blades
 - SLAM reconstructs surroundings
 - Indirect SLAM: feature matching
 - Direct SLAM: pixel matching

PROBLEM

How well does SLAM perform on borescope inspection videos of aircraft turbines?

METHOD

- Systems under test:
 - Indirect SLAM:
 - Traditional matcher: ORB
 - CNN matcher: SuperGlue (SG)
 - CNN matcher: LoFTR
 - Direct SLAM:
 - LSD: matches using pixels from gradients
 - DSO: matches using gradient pixels distributed over frame

Figure 2: Example frame from the test videos, showcasing the differences. Left - Video A; Right - Video B

EXPERIMENTS & RESULTS

•

Normal representative videos: (Fig. 3)

- ORB: no reconstruction
- SuperGlue: sparse & long tracking
- LoFTR: semi-dense & semi-robust initialization
 - dense, robust & noise free LSD:
- DSO: • dense, robust & long tracking

Vid.	Matcher	# Inits	Max. duration (s)	Avg. duration (s)	Use for
A	SG	0	-	-	-
	LoFTR	15	1.4	1	Count/loc
	LSD	9	2	1.5	Count/loc
	DSO	5	3.6	2.7	Count/loc
В	SG	2	1.3	1.3	Count/loc
	LoFTR	5	0.4	0.2	-
	LSD	7	1.9	1.8	Damage
	DSO	4	5.1	3	Damage

Figure 3: Reconstruction of Video A. Using SuperGlue, LoFTR, LSD & DSO. Red/gray dots - model; blue squares - previous camera positions: green square - current camera position.

Looped representative videos:

- Indirect: track longer
- Direct: track all frames
- No quality improvement of the model

Influence of calibration for direct: (Fig. 4)

- Tested with computer fan
- Calibrated better at linking blades

Direct SLAM follow-up:

- Near real-time does not improve performance compared to real-time
- Removing static pixels by cropping or masking does not improve performance

CONCLUSIONS Indirect:

- Traditional ORB fails, CNN depends on orientation and texture (and therefore the video)
- SuperGlue suffers when texture lacks, LoFTR more invariant
- SuperGlue tracks longer than LoFTR when initialized
- · Direct systems outperform indirect in: model density, robustness of initialization and duration of tracking
 - Calibration has major influence on reconstruction quality