QuickFix: A Multi-step Query Reformulation Method For Children's Online Search Queries

Introduction and Background

Problem:

- For online search, children write queries that are short, misspelled, and ofter [1, 2].
- Common search engines are not built with children in mind [3].
- Thus, non-optimal child queries lead to child-inappropriate results (web res or unsafe language) [3].

Similar Existing Efforts: Reformulating children's search queries so that the ret more child-friendly.

Some previously explored strategies:

- spelling and grammar correction [4].
- number word expansion ("w8" = "wait")[4].
- "for kids" keyword expansion [5].

Gap:

- single-perspective approach to reformulation (missing out on the benefit of perspectives).
- Imited "multi-perspective" reformulation research [4, 6].

Motivated by this gap: multi-step query reformulation using LLM (Gemini 2.5-

Research Question

To what extent can a multi-step query reformulation using LLM impact the content-safety of retrieved results for a given child query?

Methodology

Reformulation Method:

- multiple strategies are chained instead of passing all in a single big prompt (hallucination risk) [8].
- chosen reformulation strategies were shown to be promising [4, 5].
- chose reformulation strategies with a lower risk of semantic meaning change
- system constraint to minimize the risk of hallucination.
- model temperature of 0 to make LLM outputs more deterministic.

		LLM
ID	Description	
r_1	Fix grammatical and spelling errors.	(c_1)
r_2	Replace uncommon or advanced words with simpler synonyms, preserv-	
	ing original meaning and not altering proper nouns or titles.	
r_3	Append "for kids" to the end of the query. (a)	
c_1	Keep it under 21 words. Do not add new subject matter, opinions, or Q_0	
	links.	

Figure 1. Rules (r) and output constraints (c) for the LLM

Figure 2. Multi-step query reformulation pipeline.

 $Q_{\mathrm{full}}^{(i)}$

Atilla Colak,

Evnor	imon	tal	Sot
Exper	men	ιαι	Sei

	We use the Children-Queries dataset comprising 301 E 6-13.
n underspecified	Experiment Pipeline:
sults of advanced	 run original, fully-reformulated, and single-rule reformulated Search API. compute seven metrics for each query (based on retries) test how reformulated results contrast with original que individual reformulation rules through ablations.
	Evaluation Metrics:
of other	 Readability: Flesch-Kincaid Grade Level (FKGL), Colemestimate how easy text is to read — lower is simpler. FKGL focuses on sentence and word length; Dale-Chacoleman-Liau uses character-level stats. Content Safety: Uses Perspective API to detect TOXIC INSULT — each as a 0–1 risk score. Safety scores model nuanced harm beyond profanity (effine-grained child-safe assessments.
	Results
Flash Model) [7].	Summary of the results:
e readability and	 Full multi-step reformulation significantly improves rea 0.5–0.7 grade levels). The "for kids" rule (r₃) gives the biggest individual boos best.
	 r₁ and r₂ show no readability gains on their own. Slight increase in content risks (e.g., +0.003 in toxicity), low overall (most extreme outlier < 0.35). Reformulated results are easier to understand without
(to reduce ge.	 r₁ and r₂ show no readability gains on their own. Slight increase in content risks (e.g., +0.003 in toxicity), low overall (most extreme outlier < 0.35). Reformulated results are easier to understand without

Figure 4. Toxicity attribute distribution across query variants. Lower = less likely toxic; White dots = medians; thick bars = IQR.

Professor: Sole Pera, Supervisor: Hrishita Chakrabarti

etup

- English queries typed by children aged
- ulated queries (ablations) on Brave
- eved top-10 web result snippets). lery results and the impact of
- nan-Liau, and Dale-Chall scores
- Il highlights hard vocabulary;
- CITY, PROFANITY, THREAT, and
- e.g., insults vs. threats), enabling

adability across all metrics (avg.

- t, but combining all three rules works
- but impact is negligible and still very compromising safety.

- We followed key ethical and reproducibility practices throughout our study:
- 1. The dataset contains no personal or identifiable information and is IRB-approved. 2. All code, prompts, and intermediate results (reformulation outputs, collected web results, and metrics) are documented and made openly available for transparency and
- reproducibility.

Conclusion and Future Work

Our results show that chaining spelling/grammar correction, synonym substitution, and the "for kids" expansion inside an LLM chain reduces the reading grade of top-10 search snippets on average by 0.5-0.7 levels.

Potential Design Implications for Info Access Systems:

- avoiding the need for a standalone search engine.
- non-English queries with minimal tuning.

Limitations & Future Work:

- Results may not generalize across search engines beyond Brave.
- Safety scores rely on a single API call; averaging or smoothing may improve robustness.
- Relevance of reformulated results was not evaluated—future work can include relevance metrics.

Reflection on RQ:

- conference on Information and knowledge management, pages 393–402, 2011.
- (6):1022-1041, 2018.
- reformulation of children's search queries. 2010.
- children. Journal of the Association for Information Science and Technology, 65(7):1368–1384, 2014.
- information interaction & retrieval, pages 92–101, 2018.
- FINDINGS-EMNLP.398. URL https://doi.org/10.18653/v1/2023.findings-emnlp.398.
- 48550/arXiv.2311.07911.

Responsible Research

• Client-side deployment: The pipeline can run as a browser extension or school proxy,

• **Multilingual potential:** LLM prompts can be adapted with language tags to support

• Exploring adaptive, query-specific reformulation chains is a promising next step [9].

• Our work answers the research question affirmatively: multi-step reformulation with LLMs can enhance both readability and (minimally impact) safety for children's search queries.

References

[1] Sergio Duarte Torres and Ingmar Weber. What and how children search on the web. In Proceedings of the 20th ACM international

[2] Dania Bilal and Jacek Gwizdka. Children's query types and reformulations in google search. Information Processing & Management, 54

[3] Dania Bilal. Ranking, relevance judgment, and precision of information retrieval on children's queries: Evaluation of google, y ahoo!, b ing, y ahoo! k ids, and ask k ids. Journal of the American Society for Information Science and Technology, 63(9):1879–1896, 2012.

[4] Maarten van Kalsbeek, Joost de Wit, Rudolf Berend Trieschnigg, PE van der Vet, Theo WC Huibers, and Djoerd Hiemstra. Automatic

[5] Sergio Duarte Torres, Djoerd Hiemstra, Ingmar Weber, and Pavel Serdyukov. Query recommendation in the information domain of

[6] Ion Madrazo Azpiazu, Nevena Dragovic, Oghenemaro Anuyah, and Maria Soledad Pera. Looking for the movie seven or sven from the movie frozen? a multi-perspective strategy for recommending queries for children. In Proceedings of the 2018 conference on human

[7] Fanghua Ye, Meng Fang, Shenghui Li, and Emine Yilmaz. Enhancing conversational search: Large language model-aided informative query rewriting. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 5985–6006. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.

[8] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. CoRR, abs/2311.07911, 2023. doi: 10.48550/ARXIV.2311.07911. URL https://doi.org/10.

[9] Zihan Zhang, Meng Fang, and Ling Chen. Retrievalqa: Assessing adaptive retrieval-augmented generation for short-form open-domain question answering. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages 6963–6975. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.415. URL https://doi.org/10.18653/v1/2024.findings-acl.415.