Investigating Build System Parallelism

1. Introduction

Shorter compile times mean developers get feedback on
their code faster, so they can write more code.

Parallelism improves performance; in C/C++, it is the
responsibility of the build system in use. Choosing tasks to
execute in parallel is a scheduling problem.

Build systems use a variety scheduling algorithms for this.

exe lib It is unknown whether the choice
of scheduling affects runtime.
b 7 b3 The research question is: what are
the similarities and differences in
v — h | the task schedulers used by build
sre) src systems for compiling C/C++
! codebases?
src
Make [3] and Ninja [1] are popular build systems;

experiments also considered Tup [4] and Zig’s [2] integrated
build system.

Zig’s scheduler has access to domain-specific knowledge
and should be able to schedule tasks more efficiently.

Hypothesis: Zig will have the fastest runtime.
Ninja uses a smarter scheduling algorithm than Make.
Hypothesis: Ninja will run faster than Make.

This is a dynamic job-shop scheduling problem: a full
dependency graph is available but runtimes are unknown.

2. Methodology

The 500 most-installed packages from the Arch Linux
repositories were used. They are equipped with
configurations for the Arch Build System.

C/C++ codebases from this data set were built and their
compiler invocations were recorded.

The command-line parameters of these invocations were
parsed and normalized, using data from Zig. Of the 3000+
flags supported by Clang, only 10 were extracted.

Arbitrary build
system (e.g. make)

A compilation (dependency)
graph was constructed and used

to produce new build s

Conﬁgurations' l Python Scripts | Ricmd‘ ;('S
Compilation logs

Equality_graph Saturation was (*.wizardry. log)

Parse

used to simplify the graph and use

1S
| reconstitute.rs |

Zig’s integrated build system. i
Generate Build Optimize Build Steps
Descriptions \

Build systems were profiled in
building every codebase, taking
data from the OS scheduler.

build.ninja

optimized.mk

The collected performance data was processed to
determine the total runtime of each build, the amount of
CPU time actually spent in each build process, and the
amount of CPU idle time. Any uncategorized time was
treated as system noise.

Statistical tests (Student’s t-test with paired samples) were
used to try to refute the hypotheses.

]
TUDelft

3. Results

2i cc \ake ninja tu
10° i
Ninja
10* 4
103 4
Tup idle
Zig

° 2000Averalguv;or(t)JntimeG(?‘gg) 5000
Fastest to slowest: Zig, Make, Ninja, Tup
Zig uses parallelism less efficiently than Make

Average runtime (ms)

Ninja Make Tup

4. Conclusions

The task schedulers used by build systems do not
significantly affect their runtimes.

Developers should use the Zig build system for C/C++
codebases: it is faster than other compilers and has
great features like caching.

Future work should consider developing new
compilers with better integrated build systems.

References: [1] github.com/ninja-build/ninja [2] ziglang.org
[3] github.com/gittup/tup/ [4] gnu.org/software/make

By Arav Khanna <A.Khanna-1@student.tudelft.nl>
Supervisors: Dennis Sprokholt, Dr. Soham Chakraborty

https://www.google.com/url?q=http://github.com/ninja-build/ninja&sa=D&source=editors&ust=1719184982846440&usg=AOvVaw1Fau_bzw8Di1oj_ENGKZUH
https://www.google.com/url?q=http://ziglang.org&sa=D&source=editors&ust=1719184982846569&usg=AOvVaw2XGC7miAFh7ZGnYjycWQn6
https://www.google.com/url?q=http://github.com/gittup/tup/&sa=D&source=editors&ust=1719184982846625&usg=AOvVaw31ta7QAJ3vnow2OQ6gUv0X
https://www.google.com/url?q=http://gnu.org/software/make&sa=D&source=editors&ust=1719184982846671&usg=AOvVaw3UbDO3fXtr_qN-kzb_Vn59

